Li Ai-Min, Borodin Oleg, Pollard Travis P, Zhang Weiran, Zhang Nan, Tan Sha, Chen Fu, Jayawardana Chamithri, Lucht Brett L, Hu Enyuan, Yang Xiao-Qing, Wang Chunsheng
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
Battery Science Branch, DEVCOM Army Research Laboratory, Adelphi, MD, USA.
Nat Chem. 2024 Jun;16(6):922-929. doi: 10.1038/s41557-024-01497-x. Epub 2024 Apr 3.
Lithium metal batteries represent a promising technology for next-generation energy storage, but they still suffer from poor cycle life due to lithium dendrite formation and cathode cracking. Fluorinated solvents can improve battery longevity by improving LiF content in the solid-electrolyte interphase; however, the high cost and environmental concerns of fluorinated solvents limit battery viability. Here we designed a series of fluorine-free solvents through the methylation of 1,2-dimethoxyethane, which promotes inorganic LiF-rich interphase formation through anion reduction and achieves high oxidation stability. The anion-derived LiF interphases suppress lithium dendrite growth on the lithium anode and minimize cathode cracking under high-voltage operation. The Li-solvent structure is investigated through in situ techniques and simulations to draw correlations between the interphase compositions and electrochemical performances. The methylation strategy provides an alternative pathway for electrolyte engineering towards high-voltage electrolytes while reducing dependence on expensive fluorinated solvents.
锂金属电池是下一代储能的一项很有前景的技术,但由于锂枝晶的形成和阴极开裂,其循环寿命仍然较差。氟化溶剂可以通过提高固体电解质界面中的LiF含量来提高电池寿命;然而,氟化溶剂的高成本和环境问题限制了电池的可行性。在这里,我们通过1,2 - 二甲氧基乙烷的甲基化设计了一系列无氟溶剂,通过阴离子还原促进富含无机LiF的界面形成,并实现了高氧化稳定性。阴离子衍生的LiF界面抑制了锂阳极上锂枝晶的生长,并使高压操作下的阴极开裂最小化。通过原位技术和模拟研究了Li - 溶剂结构,以建立界面组成与电化学性能之间的相关性。甲基化策略为电解质工程提供了一条通往高压电解质的替代途径,同时减少了对昂贵氟化溶剂的依赖。