Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110160, Ecuador.
INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, I-00044 Frascati, Italy.
Sensors (Basel). 2024 Jul 18;24(14):4670. doi: 10.3390/s24144670.
This work explores the transformative role of graphene in enhancing the performance of surface plasmon resonance (SPR)-based biosensors. The motivation for this review stems from the growing interest in the unique properties of graphene, such as high surface area, excellent electrical conductivity, and versatile functionalization capabilities, which offer significant potential to improve the sensitivity, specificity, and stability of SPR biosensors. This review systematically analyzes studies published between 2010 and 2023, covering key metrics of biosensor performance. The findings reveal that the integration of graphene consistently enhances sensitivity. Specificity, although less frequently reported numerically, showed promising results, with high specificity achieved at sub-nanomolar concentrations. Stability enhancements are also significant, attributed to the protective properties of graphene and improved biomolecule adsorption. Future research should focus on mechanistic insights, optimization of integration techniques, practical application testing, scalable fabrication methods, and comprehensive comparative studies. Our findings provide a foundation for future research, aiming to further optimize and harness the unique physical properties of graphene to meet the demands of sensitive, specific, stable, and rapid biosensing in various practical applications.
这项工作探讨了石墨烯在增强基于表面等离子体共振 (SPR) 的生物传感器性能方面的变革作用。之所以进行这项综述,是因为人们对石墨烯的独特性质越来越感兴趣,例如高比表面积、优异的导电性和多功能的功能化能力,这为提高 SPR 生物传感器的灵敏度、特异性和稳定性提供了巨大的潜力。本综述系统地分析了 2010 年至 2023 年期间发表的研究,涵盖了生物传感器性能的关键指标。研究结果表明,石墨烯的集成一致地提高了灵敏度。特异性虽然较少以数值形式报告,但也取得了有希望的结果,在亚纳摩尔浓度下实现了高特异性。稳定性的提高也非常显著,这归因于石墨烯的保护特性和改善的生物分子吸附。未来的研究应侧重于深入了解其机制、优化集成技术、实际应用测试、可扩展的制造方法以及全面的比较研究。我们的研究结果为未来的研究提供了基础,旨在进一步优化和利用石墨烯的独特物理性质,以满足各种实际应用中对敏感、特异、稳定和快速生物传感的需求。