Suppr超能文献

CeO 量子点的尺寸依赖性双重功能:氢气传感器和污染物修复参数之间的相关性。

Size dependent dual functionality of CeO quantum dots: A correlation among parameters for hydrogen gas sensor and pollutant remediation.

机构信息

Smart Nanomaterials and Sensor Laboratory, Centre for Nanoscience and Nanotechnology, UIEAST, Panjab University, Chandigarh, 160014, India.

Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea.

出版信息

Chemosphere. 2024 Sep;364:142959. doi: 10.1016/j.chemosphere.2024.142959. Epub 2024 Jul 26.

Abstract

The metal oxide-based nanostructures of variable size and shape are found effective in optimizing the gas sensing ability and pollutant degradation. The size induced lattice strain and large band gap in 3nm CeO quantum dots evolved the ability towards hydrogen gas sensing and dye degradation compared to nanopebbles and nanoparticles of sizes 15 ± 3, and 30 ± 12 nm. The smaller CeO quantum dots than Debye length was found underlying reason for nearly four times sensor response and selectivity towards reducing hydrogen gases than the oxidizing gases at 1-10 ppm level. The lattice strain calculated by Rietveld refinement and W-H analysis was found in-line with the size of CeO nanostructures. The enhancement in lattice strain and optical band gap (2.66, 2.78, and 2.89 eV) with decrease in size are found critical for determining the overall efficiency of CeO nanostructures for photocatalytic activity, attributed to the strong quantum confinement effect. The higher catalytic activity of 98 % was achieved CeO quantum dots in comparison to the 95 % and 94 % obtained for CeO nanopebbles and nanoparticles. The impact of change in degradation efficacy and gas sensing ability of different CeO nanomaterials is discussed in detail. This work offers a novel and simplistic method to produce CeO quantum dots as an efficient sensor for selective detection of H gas and photocatalyst. The correlation between size, Debye length, band gap, and lattice strain gives an insight for understanding the underlying detection mechanism for selective detection of reducing gas molecules and efficient pollutant remediation.

摘要

具有不同尺寸和形状的金属氧化物纳米结构在优化气体传感能力和污染物降解方面被证明是有效的。与尺寸为 15±3nm 和 30±12nm 的纳米颗粒和纳米卵石相比,3nm CeO 量子点的尺寸诱导晶格应变和较大的带隙使 CeO 量子点具有对氢气和染料的传感和降解能力。发现 CeO 量子点的尺寸小于德拜长度是其在 1-10ppm 水平下对还原氢气的传感器响应和选择性比氧化气体高近四倍的原因。由 Rietveld 精修和 W-H 分析计算的晶格应变与 CeO 纳米结构的尺寸一致。随着尺寸的减小,晶格应变和光学带隙(2.66、2.78 和 2.89eV)的增强对于确定 CeO 纳米结构的整体光催化活性效率是至关重要的,这归因于强量子限制效应。CeO 量子点的催化活性较高,达到 98%,而 CeO 纳米颗粒和纳米卵石的催化活性分别为 95%和 94%。详细讨论了不同 CeO 纳米材料的降解效率和气体传感能力变化的影响。这项工作提供了一种新颖而简单的方法来制备 CeO 量子点,作为选择性检测 H 气体的高效传感器和光催化剂。尺寸、德拜长度、带隙和晶格应变之间的相关性为理解选择性检测还原气体分子和有效污染物修复的基本检测机制提供了深入的了解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验