Chirikjian Gregory S
Department of Mechanical Engineering, National University of Singapore , Singapore, Singapore.
Philos Trans A Math Phys Eng Sci. 2024 Sep 9;382(2278):20230352. doi: 10.1098/rsta.2023.0352. Epub 2024 Jul 29.
Many deployable structures in nature, as well as human-made mechanisms, preserve symmetry as their configurations evolve. Examples in nature include blooming flowers, dilation of the iris within the human eye, viral capsid maturation and molecular and bacterial motors. Engineered examples include opening umbrellas, elongating scissor jacks, variable apertures in cameras, expanding Hoberman spheres and some kinds of morphing origami structures. In these cases, the structures either preserve a discrete symmetry group or are described as an evolution from one discrete symmetry group to another of the same type as the structure deploys. Likewise, elastic metamaterials built from lattice structures can also preserve symmetry type while passively deforming and changing lattice parameters. A mathematical formulation of such transitions/deployments is articulated here. It is shown that if [Formula: see text] is Euclidean space, [Formula: see text] is a continuous group of motions of Euclidean space and [Formula: see text] is the type of the discrete subgroup of [Formula: see text] describing the symmetries of the deploying structure, then the symmetry of the evolving structure can be described by time-dependent subgroups of [Formula: see text] of the form [Formula: see text], where [Formula: see text] is a time-dependent affine transformation. Then, instead of considering the whole structure in [Formula: see text], a 'sector' of it that lives in the orbit space [Formula: see text] can be considered at each instant in time, and instead of considering all motions in [Formula: see text], only representatives from right cosets in the space [Formula: see text] need to be considered. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 1)'.
自然界中的许多可展开结构以及人造机械装置,在其构型演化过程中都保持对称性。自然界中的例子包括盛开的花朵、人眼虹膜的扩张、病毒衣壳成熟以及分子和细菌马达。工程学上的例子包括打开的雨伞、伸长的剪式千斤顶、相机中的可变光圈、可扩展的霍伯曼球面以及某些类型的变形折纸结构。在这些情况下,结构要么保持离散对称群,要么在结构展开时被描述为从一个离散对称群演变为同类型的另一个离散对称群。同样,由晶格结构构建的弹性超材料在被动变形和改变晶格参数时也能保持对称类型。本文阐述了这种转变/展开的数学公式。结果表明,如果[公式:见原文]是欧几里得空间,[公式:见原文]是欧几里得空间的连续运动群,[公式:见原文]是描述展开结构对称性的[公式:见原文]离散子群的类型,那么演化结构的对称性可以由[公式:见原文]的时间依赖子群[公式:见原文]来描述,其中[公式:见原文]是时间依赖的仿射变换。然后,在每个时刻,与其考虑[公式:见原文]中的整个结构,不如考虑它在轨道空间[公式:见原文]中的一个“扇区”,与其考虑[公式:见原文]中的所有运动,只需要考虑空间[公式:见原文]中右陪集的代表。本文是主题为“弹性和声学超材料科学的当前发展(第1部分)”的一部分。