Sanyal Indraneel, Nandi Arpit, Cherns David, Kuball Martin
Center for Device Thermography and Reliability, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS81TL, United Kingdom.
ACS Appl Electron Mater. 2024 Jun 21;6(7):5021-5028. doi: 10.1021/acsaelm.4c00535. eCollection 2024 Jul 23.
Heteroepitaxy of gallium oxide (GaO) is gaining popularity to address the absence of p-type doping, limited thermal conductivity of GaO epilayers, and toward realizing high-quality p-n heterojunction. During the growth of β-GaO on 4H-SiC (0001) substrates using metal-organic chemical vapor deposition, we observed formation of incomplete, misoriented particles when the layer was grown at a temperature between 650 °C and 750 °C. We propose a thermodynamic model for GaO heteroepitaxy on foreign substrates which shows that the energy cost of growing β-GaO on 4H-SiC is slightly lower as compared to sapphire substrates, suggesting similar high-temperature growth as sapphire, typically in the range of 850 °C-950 °C, that can be used for the growth of β-GaO on SiC. A two-step modified growth method was developed where the nucleation layer was grown at 750 °C followed by a buffer layer grown at various temperatures from 920 °C to 950 °C. 2θ-ω scan of X-ray diffraction (XRD) and transmission electron microscope images confirm the β-polymorph of GaO with dominant peaks in the (-201) direction. The buffer layer grown at 950 °C using a "ramp-growth" technique exhibits root-mean-square surface roughness of 3 nm and full width of half maxima of XRD rocking curve as low as 0.79°, comparable to the most mature β-GaO heteroepitaxy on sapphire, as predicted by the thermodynamic model. Finally, the interface energy of an average GaO island grown on 4H-SiC is calculated to be 0.2 J/m from the cross-section scanning transmission electron microscope image, following the Wulff-Kaishew theorem of the equilibrium island shape.
氧化镓(GaO)的异质外延因可解决p型掺杂缺失、GaO外延层热导率有限的问题以及实现高质量p-n异质结而越来越受到关注。在使用金属有机化学气相沉积法在4H-SiC(0001)衬底上生长β-GaO的过程中,我们观察到当该层在650℃至750℃之间的温度下生长时,会形成不完整、取向错误的颗粒。我们提出了一个用于在异质衬底上进行GaO异质外延的热力学模型,该模型表明,与蓝宝石衬底相比,在4H-SiC上生长β-GaO的能量成本略低,这表明可以采用与蓝宝石类似的高温生长方式,通常在850℃至950℃范围内,用于在SiC上生长β-GaO。我们开发了一种两步改进生长方法,其中成核层在750℃下生长,随后在920℃至950℃的不同温度下生长缓冲层。X射线衍射(XRD)的2θ-ω扫描和透射电子显微镜图像证实了GaO的β多晶型,其主峰位于(-201)方向。使用“斜坡生长”技术在950℃下生长的缓冲层表现出均方根表面粗糙度为3nm,XRD摇摆曲线的半高宽低至0.79°,与热力学模型预测的在蓝宝石上最成熟的β-GaO异质外延相当。最后,根据平衡岛形状的伍尔夫-凯谢夫定理,从截面扫描透射电子显微镜图像计算出在4H-SiC上生长的平均GaO岛的界面能为0.2J/m。