Suppr超能文献

用于设计微型蛋白质亲和力成熟的大规模并行自由能计算。

Massively parallel free energy calculations for affinity maturation of designed miniproteins.

作者信息

Novack Dylan, Zhang Si, Voelz Vincent A

出版信息

bioRxiv. 2024 Jul 16:2024.05.17.594758. doi: 10.1101/2024.05.17.594758.

Abstract

Computational protein design efforts continue to make remarkable advances, yet the discovery of high-affinity binders typically requires large-scale experimental screening of site-saturated mutant (SSM) libraries. Here, we explore how massively parallel free energy methods can be used for affinity maturation of designed binding proteins. Using an expanded ensemble (EE) approach, we perform exhaustive relative binding free energy calculations for SSM variants of three miniproteins designed to bind influenza A H1 hemagglutinin by Chevalier et al. (2017). We compare our predictions to experimental ΔΔ values inferred from a Bayesian analysis of the high-throughput sequencing data, and to state-of-the-art predictions made using the Flex ddG Rosetta protocol. A systematic comparison reveals prediction accuracies around 2 kcal/mol, and identifies net charge changes, large numbers of alchemical atoms, and slow side chain conformational dynamics as key contributors to the uncertainty of the EE predictions. Flex ddG predictions are more accurate on average, but highly conservative. In contrast, EE predictions can better classify stabilizing and destabilizing mutations. We also explored the ability of SSM scans to rationalize known affinity-matured variants containing multiple mutations, which are non-additive due to epistatic effects. Simple electrostatic models fail to explain non-additivity, but observed mutations are found at positions with higher Shannon entropies. Overall, this work suggests that simulation-based free energy methods can provide predictive information for affinity maturation of designed miniproteins, with many feasible improvements to the efficiency and accuracy within reach.

摘要

计算蛋白质设计工作不断取得显著进展,然而,发现高亲和力结合剂通常需要对位点饱和突变体(SSM)文库进行大规模实验筛选。在这里,我们探索如何将大规模并行自由能方法用于设计的结合蛋白的亲和力成熟。使用扩展系综(EE)方法,我们对Chevalier等人(2017年)设计的三种用于结合甲型流感H1血凝素的微型蛋白的SSM变体进行了详尽的相对结合自由能计算。我们将我们的预测与从高通量测序数据的贝叶斯分析推断出的实验ΔΔ值以及使用Flex ddG Rosetta协议做出 的最新预测进行比较。系统比较揭示了约2千卡/摩尔的预测准确性,并确定净电荷变化、大量炼金术原子和缓慢的侧链构象动力学是EE预测不确定性的关键因素。Flex ddG预测平均更准确,但非常保守。相比之下,EE预测可以更好地对稳定和不稳定突变进行分类。我们还探索了SSM扫描使包含多个突变的已知亲和力成熟变体合理化的能力,这些变体由于上位效应是非加性的。简单的静电模型无法解释非加性,但在具有较高香农熵的位置发现了观察到的突变。总体而言,这项工作表明基于模拟的自由能方法可以为设计的微型蛋白的亲和力成熟提供预测信息,并且在效率和准确性方面有许多可行 的改进。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验