Sulaiman Jordy Evan, Thompson Jaron, Cheung Pak Lun Kevin, Qian Yili, Mill Jericha, James Isabella, Vivas Eugenio I, Simcox Judith, Venturelli Ophelia
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
bioRxiv. 2024 Jul 17:2024.07.15.603560. doi: 10.1101/2024.07.15.603560.
can transiently or persistently colonize the human gut, posing a risk factor for infections. This colonization is influenced by complex molecular and ecological interactions with human gut microbiota. By investigating dynamics in human gut communities over hundreds of generations, we show patterns of stable coexistence, instability, or competitive exclusion. Lowering carbohydrate concentration shifted a community containing and the prevalent human gut symbiont from competitive exclusion to coexistence, facilitated by increased cross-feeding. In this environment, adapted via single-point mutations in key metabolic genes, altering its metabolic niche from proline to glucose utilization. These metabolic changes substantially impacted inter-species interactions and reduced disease severity in the mammalian gut. In sum, human gut microbiota interactions are crucial in shaping the long-term growth dynamics and evolutionary adaptations of , offering key insights for developing anti- strategies.
可短暂或持续定殖于人类肠道,构成感染的风险因素。这种定殖受到与人类肠道微生物群复杂的分子和生态相互作用的影响。通过研究数百代人肠道群落的动态变化,我们展示了稳定共存、不稳定或竞争排斥的模式。降低碳水化合物浓度可使含有[具体物种1]和普遍存在的人类肠道共生菌[具体物种2]的群落从竞争排斥转变为共存,这得益于交叉喂养的增加。在这种环境下,[具体物种1]通过关键代谢基因的单点突变进行适应,将其代谢生态位从脯氨酸利用转变为葡萄糖利用。这些代谢变化极大地影响了种间相互作用,并降低了哺乳动物肠道疾病的严重程度。总之,人类肠道微生物群的相互作用对于塑造[具体物种1]的长期生长动态和进化适应至关重要,为开发抗[具体物种1]策略提供了关键见解。