Suppr超能文献

递归神经网络使设计多功能合成人类肠道微生物组动力学成为可能。

Recurrent neural networks enable design of multifunctional synthetic human gut microbiome dynamics.

机构信息

Department of Systems and Control Engineering, Indian Institute of Technology, Bombay, India.

Division of Data & Decision Sciences, Tata Consultancy Services Research, Mumbai, India.

出版信息

Elife. 2022 Jun 23;11:e73870. doi: 10.7554/eLife.73870.

Abstract

Predicting the dynamics and functions of microbiomes constructed from the bottom-up is a key challenge in exploiting them to our benefit. Current models based on ecological theory fail to capture complex community behaviors due to higher order interactions, do not scale well with increasing complexity and in considering multiple functions. We develop and apply a long short-term memory (LSTM) framework to advance our understanding of community assembly and health-relevant metabolite production using a synthetic human gut community. A mainstay of recurrent neural networks, the LSTM learns a high dimensional data-driven non-linear dynamical system model. We show that the LSTM model can outperform the widely used generalized Lotka-Volterra model based on ecological theory. We build methods to decipher microbe-microbe and microbe-metabolite interactions from an otherwise black-box model. These methods highlight that Actinobacteria, Firmicutes and Proteobacteria are significant drivers of metabolite production whereas shape community dynamics. We use the LSTM model to navigate a large multidimensional functional landscape to design communities with unique health-relevant metabolite profiles and temporal behaviors. In sum, the accuracy of the LSTM model can be exploited for experimental planning and to guide the design of synthetic microbiomes with target dynamic functions.

摘要

从底层构建微生物组并预测其动态和功能是利用它们为我们谋利的关键挑战。由于高阶相互作用,当前基于生态理论的模型无法捕捉到复杂的群落行为,并且在考虑多个功能时,模型的规模也无法很好地扩展。我们开发并应用了长短期记忆(LSTM)框架,使用合成人类肠道群落来推进我们对群落组装和与健康相关的代谢产物生产的理解。LSTM 是递归神经网络的支柱,它学习高维数据驱动的非线性动力系统模型。我们表明,LSTM 模型可以胜过基于生态理论的广泛使用的广义Lotka-Volterra 模型。我们建立了解码微生物-微生物和微生物-代谢物相互作用的方法,尽管模型是一个黑盒。这些方法突出表明,放线菌、厚壁菌门和变形菌门是代谢产物产生的重要驱动因素,而形状则影响群落动态。我们使用 LSTM 模型在大型多维功能景观中进行导航,以设计具有独特健康相关代谢产物特征和时间行为的群落。总之,可以利用 LSTM 模型的准确性进行实验规划,并指导具有目标动态功能的合成微生物组的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c395/9225007/8eafcc0fed82/elife-73870-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验