Thompson Mike, Martín Mariano, Olmo Trinidad Sanmartín, Rajesh Chandana, Koo Peter K, Bolognesi Benedetta, Lehner Ben
Systems and Synthetic Biology, Centre for Genomic Regulation, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.
bioRxiv. 2024 Oct 1:2024.07.13.603366. doi: 10.1101/2024.07.13.603366.
Protein aggregation is a pathological hallmark of more than fifty human diseases and a major problem for biotechnology. Methods have been proposed to predict aggregation from sequence, but these have been trained and evaluated on small and biased experimental datasets. Here we directly address this data shortage by experimentally quantifying the amyloid nucleation of >100,000 protein sequences. This unprecedented dataset reveals the limited performance of existing computational methods and allows us to train CANYA, a convolution-attention hybrid neural network that accurately predicts amyloid nucleation from sequence. We adapt genomic neural network interpretability analyses to reveal CANYA's decision-making process and learned grammar. Our results illustrate the power of massive experimental analysis of random sequence-spaces and provide an interpretable and robust neural network model to predict amyloid nucleation.
蛋白质聚集是五十多种人类疾病的病理标志,也是生物技术面临的一个主要问题。已经有人提出了从序列预测聚集的方法,但这些方法是在小的且有偏差的实验数据集上进行训练和评估的。在这里,我们通过实验量化超过100,000个蛋白质序列的淀粉样蛋白成核,直接解决了这一数据短缺问题。这个前所未有的数据集揭示了现有计算方法的有限性能,并使我们能够训练CANYA,这是一种卷积-注意力混合神经网络,它可以从序列中准确预测淀粉样蛋白成核。我们采用基因组神经网络可解释性分析来揭示CANYA的决策过程和学习到的规则。我们的结果说明了对随机序列空间进行大规模实验分析的威力,并提供了一个可解释且强大的神经网络模型来预测淀粉样蛋白成核。