Thompson Mike, Martín Mariano, Olmo Trinidad Sanmartín, Rajesh Chandana, Koo Peter K, Bolognesi Benedetta, Lehner Ben
Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
Sci Adv. 2025 May 2;11(18):eadt5111. doi: 10.1126/sciadv.adt5111. Epub 2025 Apr 30.
Protein aggregation is a pathological hallmark of more than 50 human diseases and a major problem for biotechnology. Methods have been proposed to predict aggregation from sequence, but these have been trained and evaluated on small and biased experimental datasets. Here we directly address this data shortage by experimentally quantifying the aggregation of >100,000 protein sequences. This unprecedented dataset reveals the limited performance of existing computational methods and allows us to train CANYA, a convolution-attention hybrid neural network that accurately predicts aggregation from sequence. We adapt genomic neural network interpretability analyses to reveal CANYA's decision-making process and learned grammar. Our results illustrate the power of massive experimental analysis of random sequence-spaces and provide an interpretable and robust neural network model to predict aggregation.
蛋白质聚集是50多种人类疾病的病理标志,也是生物技术面临的一个主要问题。已经有人提出了从序列预测聚集的方法,但这些方法是在小的且有偏差的实验数据集上进行训练和评估的。在这里,我们通过实验定量分析超过10万个蛋白质序列的聚集情况,直接解决了这一数据短缺问题。这个前所未有的数据集揭示了现有计算方法的有限性能,并使我们能够训练出CANYA,这是一种卷积-注意力混合神经网络,能够从序列中准确预测聚集情况。我们采用基因组神经网络可解释性分析来揭示CANYA的决策过程和学习到的规则。我们的结果说明了对随机序列空间进行大规模实验分析的强大作用,并提供了一个可解释且稳健的神经网络模型来预测聚集。