Kenduiywo Benson Kipkemboi, Miller Sara
International Center for Tropical Agriculture (CIAT), Kenya.
Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
Heliyon. 2024 Jun 27;10(13):e33449. doi: 10.1016/j.heliyon.2024.e33449. eCollection 2024 Jul 15.
Climate change still adversely affects agriculture in the sub-Saharan Africa. There is need to strengthen early action to bolster livelihoods and food security. Most governments use pre- and post-harvest field surveys to capture statistics for National Food Balance Sheets (NFBS) key in food policy and economic planning. These surveys, though accurate, are costly, time consuming, and may not offer rapid yield estimates to support governments, emergency organizations, and related stakeholders to take advanced strategic decisions in the face of climate change. To help governments in Kenya (KEN), Zambia (ZMB), and Malawi (MWI) adopt digitally advanced maize yield forecasts, we developed a hybrid model based on the Regional Hydrologic Extremes Assessment System (RHEAS) and machine learning. The framework is set-up to use weather data (precipitation, temperature, and wind), simulations from RHEAS model (soil total moisture, soil temperature, solar radiation, surface temperature, net transpiration from vegetation, net evapotranspiration, and root zone soil moisture), simulations from DSSAT (leaf area index and water stress), and MODIS vegetation indices. Random Forest (RF) machine learning model emerged as the best hybrid setup for unit maize yield forecasts per administrative boundary scoring the lowest unbiased Root Mean Square Error (RMSE) of 0.16 MT/ha, 0.18 MT/ha, and 0.20 MT/ha in Malawi's Karonga district, Kenya's Homa Bay county, and Zambia's Senanga district respectively. According to relative RMSE, RF outperformed other hybrid models attaining the lowest score in all countries (ZMB: 25.96%, MWI: 28.97%, and KEN: 27.54%) followed by support vector machines (ZMB: 26.92%, MWI: 31.14%, and KEN: 29.50%), and linear regression (ZMB: 29.44%, MWI: 31.76%, and KEN: 47.00%). Lastly, the integration of VI and RHEAS information using hybrid models improved yield prediction. This information is useful for NFBS bulletins forecasts, design and certification of maize insurance contracts, and estimation of loss and damage in the advent of climate justice.
气候变化仍对撒哈拉以南非洲地区的农业产生不利影响。有必要加强早期行动以改善生计和粮食安全。大多数政府利用收获前和收获后的实地调查来获取国家粮食平衡表(NFBS)的统计数据,这些数据对粮食政策和经济规划至关重要。这些调查虽然准确,但成本高昂、耗时,而且可能无法提供快速的产量估计,以支持政府、应急组织及相关利益攸关方在面对气候变化时做出超前的战略决策。为帮助肯尼亚(KEN)、赞比亚(ZMB)和马拉维(MWI)的政府采用数字化先进的玉米产量预测方法,我们基于区域水文极端事件评估系统(RHEAS)和机器学习开发了一种混合模型化。该框架旨在利用气象数据(降水量、温度和风速)、RHEAS模型的模拟结果(土壤总湿度、土壤温度、太阳辐射、地表温度、植被净蒸腾量、净蒸发散量和根区土壤湿度)、DSSAT的模拟结果(叶面积指数和水分胁迫)以及MODIS植被指数。随机森林(RF)机器学习模型成为按行政边界预测单位玉米产量的最佳混合模型设置,在马拉维的卡龙加区、肯尼亚的霍马贝县和赞比亚的塞纳加区分别获得最低的无偏均方根误差(RMSE),分别为0.16公吨/公顷、0.18公吨/公顷和0.20公吨/公顷。根据相对均方根误差,随机森林在所有国家的得分最低,优于其他混合模型(赞比亚:25.96%,马拉维:28.97%,肯尼亚:27.5%),其次是支持向量机(赞比亚:26.92%,马拉维:31.14%,肯尼亚:29.50%)和线性回归(赞比亚:29.44%,马拉维:31.76%,肯尼亚:47.00%)。最后,使用混合模型整合植被指数和RHEAS信息可提高产量预测。这些信息对国家粮食平衡表公告预测、玉米保险合同的设计和认证以及在气候正义背景下估计损失和损害很有用。