Sorek Gil, Haim Yulia, Chalifa-Caspi Vered, Lazarescu Or, Ziv-Agam Maya, Hagemann Tobias, Nono Nankam Pamela Arielle, Blüher Matthias, Liberty Idit F, Dukhno Oleg, Kukeev Ivan, Yeger-Lotem Esti, Rudich Assaf, Levin Liron
Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
iScience. 2024 Jun 24;27(7):110368. doi: 10.1016/j.isci.2024.110368. eCollection 2024 Jul 19.
Deconvolution algorithms mostly rely on single-cell RNA-sequencing (scRNA-seq) data applied onto bulk RNA-sequencing (bulk RNA-seq) to estimate tissues' cell-type composition, with performance accuracy validated on deposited databases. Adipose tissues' cellular composition is highly variable, and adipocytes can only be captured by single-nucleus RNA-sequencing (snRNA-seq). Here we report the development of sNucConv, a Scaden deep-learning-based deconvolution tool, trained using 5 hSAT and 7 hVAT snRNA-seq-based data corrected by (i) snRNA-seq/bulk RNA-seq highly correlated genes and (ii) individual cell-type regression models. Applying sNucConv on our bulk RNA-seq data resulted in cell-type proportion estimation of 15 and 13 cell types, with accuracy of R = 0.93 (range: 0.76-0.97) and R = 0.95 (range: 0.92-0.98) for hVAT and hSAT, respectively. This performance level was further validated on an independent set of samples (5 hSAT; 5 hVAT). The resulting model was depot specific, reflecting depot differences in gene expression patterns. Jointly, sNucConv provides proof-of-concept for producing validated deconvolution models for tissues un-amenable to scRNA-seq.
反卷积算法大多依赖于应用于批量RNA测序(bulk RNA-seq)的单细胞RNA测序(scRNA-seq)数据来估计组织的细胞类型组成,其性能准确性在已存入的数据库中得到验证。脂肪组织的细胞组成高度可变,而脂肪细胞只能通过单细胞核RNA测序(snRNA-seq)来捕获。在此,我们报告了sNucConv的开发,这是一种基于Scaden深度学习的反卷积工具,使用通过(i)snRNA-seq/批量RNA-seq高度相关基因和(ii)个体细胞类型回归模型校正的5个皮下脂肪组织(hSAT)和7个内脏脂肪组织(hVAT)的snRNA-seq数据进行训练。将sNucConv应用于我们的批量RNA-seq数据,得到了15种和13种细胞类型的细胞类型比例估计,hVAT和hSAT的估计准确性分别为R = 0.93(范围:0.76 - 0.97)和R = 0.95(范围:0.92 - 0.98)。这一性能水平在一组独立样本(5个hSAT;5个hVAT)上得到了进一步验证。所得模型具有部位特异性,反映了基因表达模式的部位差异。总体而言,sNucConv为生成适用于无法进行scRNA-seq的组织的经过验证的反卷积模型提供了概念验证。