Mandla Ravi, Lorenz Kim, Yin Xianyong, Bocher Ozvan, Huerta-Chagoya Alicia, Arruda Ana Luiza, Piron Anthony, Horn Susanne, Suzuki Ken, Hatzikotoulas Konstantinos, Southam Lorraine, Taylor Henry, Yang Kaiyuan, Hrovatin Karin, Tong Yue, Lytrivi Maria, Rayner Nigel W, Meigs James B, McCarthy Mark I, Mahajan Anubha, Udler Miriam S, Spracklen Cassandra N, Boehnke Michael, Vujkovic Marijana, Rotter Jerome I, Eizirik Decio L, Cnop Miriam, Lickert Heiko, Morris Andrew P, Zeggini Eleftheria, Voight Benjamin F, Mercader Josep M
Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
medRxiv. 2024 Jul 15:2024.07.15.24310282. doi: 10.1101/2024.07.15.24310282.
Discerning the mechanisms driving type 2 diabetes (T2D) pathophysiology from genome-wide association studies (GWAS) remains a challenge. To this end, we integrated omics information from 16 multi-tissue and multi-ancestry expression, protein, and metabolite quantitative trait loci (QTL) studies and 46 multi-ancestry GWAS for T2D-related traits with the largest, most ancestrally diverse T2D GWAS to date. Of the 1,289 T2D GWAS index variants, 716 (56%) demonstrated strong evidence of colocalization with a molecular or T2D-related trait, implicating 657 -effector genes, 1,691 distal-effector genes, 731 metabolites, and 43 T2D-related traits. We identified 773 of these - and distal-effector genes using either expression QTL data from understudied ancestry groups or inclusion of T2D index variants enriched in underrepresented populations, emphasizing the value of increasing population diversity in functional mapping. Linking these variants, genes, metabolites, and traits into a network, we elucidated mechanisms through which T2D-associated variation may impact disease risk. Finally, we showed that drugs targeting effector proteins were enriched in those approved to treat T2D, highlighting the potential of these results to prioritize drug targets for T2D. These results represent a leap in the molecular characterization of T2D-associated genetic variation and will aid in translating genetic findings into novel therapeutic strategies.
从全基因组关联研究(GWAS)中识别驱动2型糖尿病(T2D)病理生理学的机制仍然是一项挑战。为此,我们整合了来自16项多组织、多血统的表达、蛋白质和代谢物数量性状位点(QTL)研究的组学信息,以及46项针对T2D相关性状的多血统GWAS,并将其与迄今为止规模最大、血统最为多样的T2D GWAS相结合。在1289个T2D GWAS索引变体中,716个(56%)显示出与分子或T2D相关性状共定位的有力证据,涉及657个效应基因、1691个远端效应基因、731种代谢物和43个T2D相关性状。我们使用来自研究不足的血统群体的表达QTL数据,或纳入代表性不足人群中富集的T2D索引变体,确定了其中773个效应基因和远端效应基因,强调了在功能定位中增加群体多样性的价值。通过将这些变体、基因、代谢物和性状连接成一个网络,我们阐明了T2D相关变异可能影响疾病风险的机制。最后,我们表明,靶向效应蛋白的药物在已批准用于治疗T2D的药物中富集,突出了这些结果在确定T2D药物靶点优先级方面的潜力。这些结果代表了T2D相关遗传变异分子特征研究的一大飞跃,并将有助于将遗传研究结果转化为新的治疗策略。
Curr Diab Rep. 2022-5
Nat Med. 2024-4
Nat Rev Drug Discov. 2023-11
Mol Metab. 2023-12