Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA.
Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
BMC Genomics. 2024 Nov 19;25(1):1111. doi: 10.1186/s12864-024-10971-2.
Therapeutic targets supported by genetic evidence from genome-wide association studies (GWAS) show higher probability of success in clinical trials. GWAS is a powerful approach to identify links between genetic variants and phenotypic variation; however, identifying the genes driving associations identified in GWAS remains challenging. Integration of molecular quantitative trait loci (molQTL) such as expression QTL (eQTL) using mendelian randomization (MR) and colocalization analyses can help with the identification of causal genes. Careful interpretation remains warranted because eQTL can affect the expression of multiple genes within the same locus.
We used a combination of genomic features that include variant annotation, activity-by-contact maps, MR, and colocalization with molQTL to prioritize causal genes across 4,611 disease GWAS and meta-analyses from biobank studies, namely FinnGen, Estonian Biobank and UK Biobank.
Genes identified using this approach are enriched for gold standard causal genes and capture known biological links between disease genetics and biology. In addition, we find that eQTL colocalizing with GWAS are statistically enriched for corresponding disease-relevant tissues. We show that predicted directionality from MR is generally consistent with matched drug mechanism of actions (> 85% for approved drugs). Compared to the nearest gene mapping method, genes supported by multi-omics evidences displayed higher enrichment in approved therapeutic targets (risk ratio 1.75 vs. 2.58 for genes with the highest level of support). Finally, using this approach, we detected anassociation between the IL6 receptor signal transduction gene IL6ST and polymyalgia rheumatica, an indication for which sarilumab, a monoclonal antibody against IL-6, has been recently approved.
Combining variant annotation, activity-by-contact maps, and molQTL increases performance to identify causal genes, while informing on directionality which can be translated to successful target identification and drug development.
全基因组关联研究(GWAS)提供的遗传证据支持的治疗靶点在临床试验中更有可能取得成功。GWAS 是一种强大的方法,可以识别遗传变异与表型变异之间的联系;然而,确定 GWAS 中鉴定出的关联的驱动基因仍然具有挑战性。使用孟德尔随机化(MR)和共定位分析整合分子数量性状基因座(molQTL),如表达数量性状基因座(eQTL),有助于鉴定因果基因。由于 eQTL 可能影响同一基因座内多个基因的表达,因此仍然需要谨慎解释。
我们使用了基因组特征的组合,包括变体注释、活性接触图、MR 和与 molQTL 的共定位,对来自生物库研究(即芬兰基因、爱沙尼亚生物库和英国生物库)的 4611 个疾病 GWAS 和荟萃分析中的因果基因进行优先级排序。
使用这种方法鉴定的基因富含黄金标准因果基因,并捕获疾病遗传学与生物学之间已知的生物学联系。此外,我们发现与 GWAS 共定位的 eQTL 在相应的疾病相关组织中具有统计学上的富集。我们表明,MR 预测的方向性通常与匹配的药物作用机制一致(对于已批准的药物,超过 85%)。与最近的基因映射方法相比,多组学证据支持的基因在已批准的治疗靶点中显示出更高的富集度(支持程度最高的基因的风险比为 1.75 对 2.58)。最后,使用这种方法,我们检测到白细胞介素 6 受体信号转导基因 IL6ST 与多发性肌痛的关联,最近已批准针对该基因的白细胞介素-6 单克隆抗体 sarilumab 用于治疗多发性肌痛。
结合变体注释、活性接触图和 molQTL 可以提高识别因果基因的性能,同时提供方向性信息,这可以转化为成功的靶点识别和药物开发。