Suppr超能文献

表面活性剂促进气体水合物的生长动力学与多孔结构

Growth Kinetics and Porous Structure of Surfactant-Promoted Gas Hydrate.

作者信息

Samar Belkacem, Venet Saphir, Desmedt Arnaud, Broseta Daniel

机构信息

Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LFCR, Pau 64013, France.

Université de Bordeaux, ISM UMR5255 CNRS, Talence Cedex 33405, France.

出版信息

ACS Omega. 2024 Jul 12;9(29):31842-31854. doi: 10.1021/acsomega.4c03251. eCollection 2024 Jul 23.

Abstract

Surfactants present in tiny amounts in the aqueous phase are known to be efficient gas hydrate promoters; yet, the promotion mechanisms are still not fully understood. Understanding and directing those mechanisms is key to the implementation of gas-hydrate-based applications such as gas storage and separation, secondary refrigeration or water treatment, and desalination. In this work, the growth at the water/gas interface and the porous structure of surfactant-promoted methane hydrate are observed by optical microscopy and Raman imaging in glass capillaries used as optical cells. Hollow crystals are continuously generated and expelled from the methane/water meniscus into the water or surfactant solution, where they ultimately form the skeleton of a porous medium filled with the solution. Unprecedented information is gathered over a range of scales from the molecular scale (crystal structure and cage filling) to the mesoscale (crystal morphologies, growth habits and pore sizes) and macroscale (rates and amounts of water and gas converted into hydrate and hydrate porosity). Following an early steady-state growth regime, a sudden order-of-magnitude increase of the conversion rate occurs, which is related to gaseous methane microbubbles being directly incorporated across the meniscus in the aqueous solution and later converted to methane hydrate. An assessment and comparison are made of the mechanisms and performance of two common anionic surfactants known to be efficient gas hydrate promoters, SDS (sodium dodecyl sulfate) and AOT (dioctylsulfosuccinate sodium or AerosolOcTyl). AOT provides a quicker but more limited conversion into hydrate than SDS, suggesting that it is more appropriate for continuous flow processes while SDS is better suited for gas storage applications. Raman spectra reveal that cage filling by methane of structure I methane hydrate is not affected by surfactants.

摘要

已知水相中微量存在的表面活性剂是高效的气体水合物促进剂;然而,其促进机制仍未完全理解。理解并引导这些机制是实施基于气体水合物的应用(如气体储存与分离、二次制冷或水处理以及海水淡化)的关键。在这项工作中,通过光学显微镜和拉曼成像,在用作光学池的玻璃毛细管中观察了表面活性剂促进的甲烷水合物在水/气界面的生长以及多孔结构。空心晶体不断生成并从甲烷/水弯月面排入水中或表面活性剂溶液中,最终在那里形成充满溶液的多孔介质骨架。从分子尺度(晶体结构和笼形填充)到介观尺度(晶体形态、生长习性和孔径)再到宏观尺度(水和气体转化为水合物的速率和量以及水合物孔隙率),在一系列尺度上收集到了前所未有的信息。在早期的稳态生长阶段之后,转化率突然出现数量级的增加,这与气态甲烷微泡直接穿过弯月面并入水溶液中并随后转化为甲烷水合物有关。对两种已知为高效气体水合物促进剂的常见阴离子表面活性剂SDS(十二烷基硫酸钠)和AOT(二辛基磺基琥珀酸钠或气溶胶OT)的机制和性能进行了评估和比较。与SDS相比,AOT转化为水合物的速度更快,但转化程度更有限,这表明它更适合连续流动过程,而SDS更适合气体储存应用。拉曼光谱显示,I型甲烷水合物中甲烷的笼形填充不受表面活性剂影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/840d/11270568/81cb9cb32181/ao4c03251_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验