Atig Dyhia, Broseta Daniel, Pereira Jean-Michel, Brown Ross
CNRS/ TOTAL/ UNIV PAU & PAYS ADOUR E2S UPPA, Laboratoire des fluides complexes et de leurs réservoirs, UMR5150, 64000, Pau, France.
Navier, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France.
Nat Commun. 2020 Jul 6;11(1):3379. doi: 10.1038/s41467-020-16628-4.
Methane hydrate is widely distributed in the pores of marine sediments or permafrost soils, contributing to their mechanical properties. Yet the tensile properties of the hydrate at pore scales remain almost completely unknown, notably the influence of grain size on its own cohesion. Here we grow thin films of the hydrate in glass capillaries. Using a novel, contactless thermal method to apply stress, and video microscopy to observe the strain, we estimate the tensile elastic modulus and strength. Ductile and brittle characteristics are both found, dependent on sample thickness and texture, which are controlled by supercooling with respect to the dissociation temperature and by ageing. Relating the data to the literature suggests the cohesive strength of methane hydrate was so far significantly overestimated.
甲烷水合物广泛分布于海洋沉积物或永久冻土的孔隙中,影响着它们的力学性质。然而,水合物在孔隙尺度下的拉伸特性几乎完全未知,尤其是粒径对其自身内聚力的影响。在此,我们在玻璃毛细管中生长水合物薄膜。通过一种新颖的非接触热方法施加应力,并利用视频显微镜观察应变,我们估算了拉伸弹性模量和强度。结果发现,根据样品厚度和质地的不同,水合物呈现出韧性和脆性特征,而这又受相对于分解温度的过冷度和老化过程的控制。将这些数据与文献相结合表明,迄今为止,甲烷水合物的内聚强度被大大高估了。