Orthopedics. 2024 Sep-Oct;47(5):e247-e254. doi: 10.3928/01477447-20240718-02. Epub 2024 Jul 29.
This study focused on using deep learning neural networks to classify the severity of osteoarthritis in the knee. A continuous regression score of osteoarthritis severity has yet to be explored using artificial intelligence machine learning, which could offer a more nuanced assessment of osteoarthritis.
This study used 8260 radiographic images from The Osteoarthritis Initiative to develop and assess four neural network models (VGG16, EfficientNetV2 small, ResNet34, and DenseNet196). Each model generated a regressor score of the osteoarthritis severity based on Kellgren-Lawrence grading scale criteria. Primary performance outcomes assessed were area under the curve (AUC), accuracy, and mean absolute error (MAE) for each model. Secondary outcomes evaluated were precision, recall, and F-1 score.
The EfficientNet model architecture yielded the strongest AUC (0.83), accuracy (71%), and MAE (0.42) compared with VGG16 (AUC: 0.74; accuracy: 57%; MAE: 0.54), ResNet34 (AUC: 0.76; accuracy: 60%; MAE: 0.53), and DenseNet196 (AUC: 0.78; accuracy: 62%; MAE: 0.49).
Convolutional neural networks offer an automated and accurate way to quickly assess and diagnose knee radiographs for osteoarthritis. The regression score models evaluated in this study demonstrated superior AUC, accuracy, and MAE compared with standard convolutional neural network models. The EfficientNet model exhibited the best overall performance, including the highest AUC (0.83) noted in the literature. The artificial intelligence-generated regressor exhibits a finer progression of knee osteoarthritis by quantifying severity of various hallmark features. Potential applications for this technology include its use as a screening tool in determining patient suitability for orthopedic referral. [. 2024;47(5):e247-e254.].
本研究旨在使用深度学习神经网络对膝关节骨关节炎的严重程度进行分类。人工智能机器学习尚未探索使用连续回归评分来评估骨关节炎严重程度,这可能提供更细致的骨关节炎评估。
本研究使用了来自骨关节炎倡议的 8260 张放射图像,开发和评估了四个神经网络模型(VGG16、EfficientNetV2 small、ResNet34 和 DenseNet196)。每个模型根据 Kellgren-Lawrence 分级标准生成骨关节炎严重程度的回归评分。主要评估的性能指标包括每个模型的曲线下面积(AUC)、准确性和平均绝对误差(MAE)。次要评估的指标包括精确度、召回率和 F1 分数。
与 VGG16(AUC:0.74;准确性:57%;MAE:0.54)、ResNet34(AUC:0.76;准确性:60%;MAE:0.53)和 DenseNet196(AUC:0.78;准确性:62%;MAE:0.49)相比,EfficientNet 模型结构产生的 AUC(0.83)最强,准确性(71%)和 MAE(0.42)最高。
卷积神经网络提供了一种快速评估和诊断膝关节骨关节炎的自动化和准确方法。本研究评估的回归评分模型与标准卷积神经网络模型相比,具有更高的 AUC、准确性和 MAE。EfficientNet 模型表现出最佳的整体性能,包括文献中报道的最高 AUC(0.83)。人工智能生成的回归器通过量化各种标志性特征的严重程度,表现出更精细的膝关节骨关节炎进展。该技术的潜在应用包括将其用作确定患者是否适合骨科转诊的筛选工具。