Suppr超能文献

人工智能辅助放射学检测和分类膝关节骨关节炎及其严重程度:一项横断面诊断研究。

Artificial intelligence assistance in radiographic detection and classification of knee osteoarthritis and its severity: a cross-sectional diagnostic study.

机构信息

Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.

出版信息

Eur Rev Med Pharmacol Sci. 2022 Mar;26(5):1549-1558. doi: 10.26355/eurrev_202203_28220.

Abstract

OBJECTIVE

Radiographic interpretation suffers from an ever-increasing workload in orthopedic and radiology departments. The present study applied and assessed the performance of a convolutional neural network designed to assist orthopedists and radiologists in the detection and classification of knee osteoarthritis from early to severe degrees in accordance with the Kellgren-Lawrence (KL) classification system.

MATERIALS AND METHODS

In total, 1650 knee joint radiographs (anteroposterior view) were collected from the Osteoarthritis Initiative public resource. Two models were developed: one distinguished normal (KL 0-I) from osteoarthritic knees (KL II-IV), and the other classified the severity as normal (KL 0-I), non-severe (KL II), or severe (KL III-IV). The regions of interest were labeled under the supervision of experts. Our artificial intelligence (AI) models were trained using the You Only Look Once version 3 (YOLOv3) detection algorithm.

RESULTS

Our first AI model using YOLOv3 tiny could detect and classify normal and osteoarthritic knees on plain knee joint radiographs with 85% accuracy and 81% mean average precision. The second AI model for classifying severity achieved a total accuracy of 86.7% and mean average precision of 70.6%.

CONCLUSIONS

Our proposed deep learning models provided high accuracy and satisfactory precision for the detection and classification of early to severe knee osteoarthritis on anteroposterior radiographs. These models may be used as diagnostic aids by interpreting knee radiographs and guiding the treatment options via each osteoarthritic stage for related physicians and specialists.

摘要

目的

在矫形和放射科,影像学解释的工作量日益增加。本研究应用并评估了一种卷积神经网络的性能,该网络旨在根据 Kellgren-Lawrence(KL)分类系统,协助矫形医师和放射科医师检测和分类从早期到严重程度的膝关节骨关节炎。

材料和方法

共收集了 1650 例膝关节(前后位)的关节炎倡议公共资源的 X 光片。开发了两种模型:一种将正常(KL 0-I)与骨关节炎膝关节(KL II-IV)区分开来,另一种将严重程度分为正常(KL 0-I)、非严重(KL II)或严重(KL III-IV)。在专家监督下对感兴趣区域进行标记。我们的人工智能(AI)模型使用 You Only Look Once 版本 3(YOLOv3)检测算法进行训练。

结果

我们的第一个使用 YOLOv3 tiny 的 AI 模型可以在普通膝关节 X 光片上检测和分类正常和骨关节炎的膝关节,准确率为 85%,平均准确率为 81%。用于分类严重程度的第二个 AI 模型的总准确率为 86.7%,平均准确率为 70.6%。

结论

我们提出的深度学习模型在前后位 X 光片上对早期至严重膝关节骨关节炎的检测和分类具有较高的准确性和令人满意的精度。这些模型可以作为诊断辅助工具,通过每个骨关节炎阶段解读膝关节 X 光片并指导相关医生和专家的治疗选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验