The Department of Biomedical Engineering, University of California, Irvine, California, USA.
Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
Med Phys. 2024 Nov;51(11):8496-8505. doi: 10.1002/mp.17318. Epub 2024 Jul 29.
Radiation delivery with ultra-high dose rate (FLASH) radiotherapy (RT) holds promise for improving treatment outcomes and reducing side effects but poses challenges in radiation delivery accuracy due to its ultra-high dose rates. This necessitates the development of novel imaging and verification technologies tailored to these conditions.
Our study explores the effectiveness of proton-induced acoustic imaging (PAI) in tracking the Bragg peak in three dimensions and in real time during FLASH proton irradiations, offering a method for volumetric beam imaging at both conventional and FLASH dose rates.
We developed a three-dimensional (3D) PAI technique using a 256-element ultrasound detector array for FLASH dose rate proton beams. In the study, we tested protoacoustic signal with a beamline of a FLASH-capable synchrocyclotron, setting the distal 90% of the Bragg peak around 35 mm away from the ultrasound array. This configuration allowed us to assess various total proton radiation doses, maintaining a consistent beam output of 21 pC/pulse. We also explored a spectrum of dose rates, from 15 Gy/s up to a FLASH rate of 48 Gy/s, by administering a set number of pulses. Furthermore, we implemented a three-dot scanning beam approach to observe the distinct movements of individual Bragg peaks using PAI. All these procedures utilized a proton beam energy of 180 MeV to achieve the maximum possible dose rate.
Our findings indicate a strong linear relationship between protoacoustic signal amplitudes and delivered doses (R = 0.9997), with a consistent fit across different dose rates. The technique successfully provided 3D renderings of Bragg peaks at FLASH rates, validated through absolute Gamma index values.
The protoacoustic system demonstrates effectiveness in 3D visualization and tracking of the Bragg peak during FLASH proton therapy, representing a notable advancement in proton therapy quality assurance. This method promises enhancements in protoacoustic image guidance and real-time dosimetry, paving the way for more accurate and effective treatments in ultra-high dose rate therapy environments.
超高剂量率(FLASH)放射治疗(RT)在提高治疗效果和降低副作用方面具有广阔的前景,但由于其超高剂量率,在放射治疗的准确性方面存在挑战。这就需要开发专门针对这些条件的新型成像和验证技术。
本研究探讨了质子诱发声成像(PAI)在 FLASH 质子照射过程中实时跟踪布拉格峰的三维效果,为常规和 FLASH 剂量率下的容积束成像提供了一种方法。
我们开发了一种用于 FLASH 剂量率质子束的三维(3D)PAI 技术,使用了 256 元超声探测器阵列。在这项研究中,我们使用 FLASH 功能同步回旋加速器的光束线测试了原声信号,将布拉格峰的远端 90%设置在离超声阵列约 35mm 的位置。这种配置允许我们评估各种总质子辐射剂量,同时保持一致的 21pC/脉冲的束流输出。我们还通过施加一定数量的脉冲探索了从 15Gy/s 到 48Gy/s 的 FLASH 剂量率范围。此外,我们采用三点扫描束方法,利用 PAI 观察单个布拉格峰的明显运动。所有这些程序都使用 180MeV 的质子束能量来实现最大可能的剂量率。
我们的研究结果表明,原声信号幅度与传递剂量之间存在很强的线性关系(R=0.9997),在不同剂量率下都有一致的拟合。该技术成功地在 FLASH 剂量率下提供了布拉格峰的 3D 渲染图,通过绝对伽马指数值进行验证。
原声系统在 FLASH 质子治疗过程中能够有效地实现布拉格峰的 3D 可视化和跟踪,这是质子治疗质量保证方面的一个显著进展。这种方法有望增强原声图像引导和实时剂量测定,为超高剂量率治疗环境中的更精确和有效的治疗铺平道路。