Suppr超能文献

利用原声学成像实现适用于 FLASH 技术的临床同步回旋加速器的实时、容积剂量测定。

Toward real-time, volumetric dosimetry for FLASH-capable clinical synchrocyclotrons using protoacoustic imaging.

机构信息

The Department of Biomedical Engineering, University of California, Irvine, California, USA.

Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.

出版信息

Med Phys. 2024 Nov;51(11):8496-8505. doi: 10.1002/mp.17318. Epub 2024 Jul 29.

Abstract

BACKGROUND

Radiation delivery with ultra-high dose rate (FLASH) radiotherapy (RT) holds promise for improving treatment outcomes and reducing side effects but poses challenges in radiation delivery accuracy due to its ultra-high dose rates. This necessitates the development of novel imaging and verification technologies tailored to these conditions.

PURPOSE

Our study explores the effectiveness of proton-induced acoustic imaging (PAI) in tracking the Bragg peak in three dimensions and in real time during FLASH proton irradiations, offering a method for volumetric beam imaging at both conventional and FLASH dose rates.

METHODS

We developed a three-dimensional (3D) PAI technique using a 256-element ultrasound detector array for FLASH dose rate proton beams. In the study, we tested protoacoustic signal with a beamline of a FLASH-capable synchrocyclotron, setting the distal 90% of the Bragg peak around 35 mm away from the ultrasound array. This configuration allowed us to assess various total proton radiation doses, maintaining a consistent beam output of 21 pC/pulse. We also explored a spectrum of dose rates, from 15 Gy/s up to a FLASH rate of 48 Gy/s, by administering a set number of pulses. Furthermore, we implemented a three-dot scanning beam approach to observe the distinct movements of individual Bragg peaks using PAI. All these procedures utilized a proton beam energy of 180 MeV to achieve the maximum possible dose rate.

RESULTS

Our findings indicate a strong linear relationship between protoacoustic signal amplitudes and delivered doses (R = 0.9997), with a consistent fit across different dose rates. The technique successfully provided 3D renderings of Bragg peaks at FLASH rates, validated through absolute Gamma index values.

CONCLUSIONS

The protoacoustic system demonstrates effectiveness in 3D visualization and tracking of the Bragg peak during FLASH proton therapy, representing a notable advancement in proton therapy quality assurance. This method promises enhancements in protoacoustic image guidance and real-time dosimetry, paving the way for more accurate and effective treatments in ultra-high dose rate therapy environments.

摘要

背景

超高剂量率(FLASH)放射治疗(RT)在提高治疗效果和降低副作用方面具有广阔的前景,但由于其超高剂量率,在放射治疗的准确性方面存在挑战。这就需要开发专门针对这些条件的新型成像和验证技术。

目的

本研究探讨了质子诱发声成像(PAI)在 FLASH 质子照射过程中实时跟踪布拉格峰的三维效果,为常规和 FLASH 剂量率下的容积束成像提供了一种方法。

方法

我们开发了一种用于 FLASH 剂量率质子束的三维(3D)PAI 技术,使用了 256 元超声探测器阵列。在这项研究中,我们使用 FLASH 功能同步回旋加速器的光束线测试了原声信号,将布拉格峰的远端 90%设置在离超声阵列约 35mm 的位置。这种配置允许我们评估各种总质子辐射剂量,同时保持一致的 21pC/脉冲的束流输出。我们还通过施加一定数量的脉冲探索了从 15Gy/s 到 48Gy/s 的 FLASH 剂量率范围。此外,我们采用三点扫描束方法,利用 PAI 观察单个布拉格峰的明显运动。所有这些程序都使用 180MeV 的质子束能量来实现最大可能的剂量率。

结果

我们的研究结果表明,原声信号幅度与传递剂量之间存在很强的线性关系(R=0.9997),在不同剂量率下都有一致的拟合。该技术成功地在 FLASH 剂量率下提供了布拉格峰的 3D 渲染图,通过绝对伽马指数值进行验证。

结论

原声系统在 FLASH 质子治疗过程中能够有效地实现布拉格峰的 3D 可视化和跟踪,这是质子治疗质量保证方面的一个显著进展。这种方法有望增强原声图像引导和实时剂量测定,为超高剂量率治疗环境中的更精确和有效的治疗铺平道路。

相似文献

引用本文的文献

1
3D protoacoustic radiography: A proof of principle study.3D 原始声放射成像:一项原理验证研究。
Appl Phys Lett. 2025 Feb 17;126(7):074102. doi: 10.1063/5.0239878. Epub 2025 Feb 19.

本文引用的文献

4
Model-Based 3-D X-Ray Induced Acoustic Computerized Tomography.基于模型的三维X射线诱导声学计算机断层扫描
IEEE Trans Radiat Plasma Med Sci. 2023 May;7(5):532-543. doi: 10.1109/TRPMS.2023.3238017. Epub 2023 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验