Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Largo Gemelli 1, Milan 20123, Italy.
Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Hörsalsvägen 7A, Göteborg SE-41296, Sweden.
Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae067.
The scope of this paper is a multivariate setting involving categorical variables. Following an external manipulation of one variable, the goal is to evaluate the causal effect on an outcome of interest. A typical scenario involves a system of variables representing lifestyle, physical and mental features, symptoms, and risk factors, with the outcome being the presence or absence of a disease. These variables are interconnected in complex ways, allowing the effect of an intervention to propagate through multiple paths. A distinctive feature of our approach is the estimation of causal effects while accounting for uncertainty in both the dependence structure, which we represent through a directed acyclic graph (DAG), and the DAG-model parameters. Specifically, we propose a Markov chain Monte Carlo algorithm that targets the joint posterior over DAGs and parameters, based on an efficient reversible-jump proposal scheme. We validate our method through extensive simulation studies and demonstrate that it outperforms current state-of-the-art procedures in terms of estimation accuracy. Finally, we apply our methodology to analyze a dataset on depression and anxiety in undergraduate students.
本文的研究范围涉及多变量的设定,包括分类变量。在对一个变量进行外部操作后,目标是评估对感兴趣的结果的因果效应。一个典型的场景涉及一个变量系统,代表生活方式、身体和精神特征、症状和风险因素,而结果是疾病的存在或不存在。这些变量以复杂的方式相互关联,使得干预的效果可以通过多个路径传播。我们的方法的一个显著特点是在考虑依赖结构不确定性的同时估计因果效应,我们通过有向无环图(DAG)来表示该结构。具体来说,我们提出了一种基于有效可逆跳跃提议方案的马尔可夫链蒙特卡罗算法,用于针对 DAG 和参数的联合后验进行目标定位。我们通过广泛的模拟研究验证了我们的方法,并证明它在估计准确性方面优于当前最先进的程序。最后,我们将我们的方法应用于分析大学生抑郁和焦虑的数据集。