Suppr超能文献

多元二项式探测器:离散生存分析中的变化点估计。

The multivariate Bernoulli detector: change point estimation in discrete survival analysis.

机构信息

Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.

Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research , Singapore 117609, Singapore.

出版信息

Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae075.

Abstract

Time-to-event data are often recorded on a discrete scale with multiple, competing risks as potential causes for the event. In this context, application of continuous survival analysis methods with a single risk suffers from biased estimation. Therefore, we propose the multivariate Bernoulli detector for competing risks with discrete times involving a multivariate change point model on the cause-specific baseline hazards. Through the prior on the number of change points and their location, we impose dependence between change points across risks, as well as allowing for data-driven learning of their number. Then, conditionally on these change points, a multivariate Bernoulli prior is used to infer which risks are involved. Focus of posterior inference is cause-specific hazard rates and dependence across risks. Such dependence is often present due to subject-specific changes across time that affect all risks. Full posterior inference is performed through a tailored local-global Markov chain Monte Carlo (MCMC) algorithm, which exploits a data augmentation trick and MCMC updates from nonconjugate Bayesian nonparametric methods. We illustrate our model in simulations and on ICU data, comparing its performance with existing approaches.

摘要

时间事件数据通常以离散的尺度记录,其中多个竞争风险是事件的潜在原因。在这种情况下,应用具有单一风险的连续生存分析方法会导致有偏估计。因此,我们提出了一种用于具有离散时间的竞争风险的多元 Bernoulli 探测器,涉及多元变化点模型在特定原因的基线风险上。通过对变化点数量和位置的先验,我们在风险之间施加了变化点之间的依赖性,同时允许对其数量进行数据驱动的学习。然后,在这些变化点的条件下,使用多元 Bernoulli 先验来推断涉及哪些风险。后验推断的重点是特定原因的风险率和风险之间的依赖性。这种依赖性通常是由于随时间变化的特定于主体的变化而导致的,这些变化会影响所有风险。通过定制的局部-全局马尔可夫链蒙特卡罗(MCMC)算法进行完整的后验推断,该算法利用数据增强技巧和非共轭贝叶斯非参数方法的 MCMC 更新。我们在模拟和 ICU 数据中说明了我们的模型,并与现有方法进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验