Bertoni Christian, Haferkamp Jonas, Hinsche Marcel, Ioannou Marios, Eisert Jens, Pashayan Hakop
Dahlem Center for Complex Quantum Systems, <a href="https://ror.org/046ak2485">Freie Universität Berlin</a>, Germany.
<a href="https://ror.org/02aj13c28">Helmholtz-Zentrum Berlin für Materialien und Energie</a>, 14109 Berlin, Germany.
Phys Rev Lett. 2024 Jul 12;133(2):020602. doi: 10.1103/PhysRevLett.133.020602.
We provide practical and powerful schemes for learning properties of a quantum state using a small number of measurements. Specifically, we present a randomized measurement scheme modulated by the depth of a random quantum circuit in one spatial dimension. This scheme interpolates between two known classical shadows schemes based on random Pauli measurements and random Clifford measurements. We focus on the regime where depth scales logarithmically in the system size and provide evidence that this retains the desirable sample complexity properties of both extremal schemes while also being experimentally feasible. We present methods for two key tasks; estimating expectation values of certain observables from generated classical shadows and, computing upper bounds on the depth-modulated shadow norm, thus providing rigorous guarantees on the accuracy of the output estimates. We achieve our findings by bringing together tools from shadow estimation, random circuits, and tensor networks.
我们提供了实用且强大的方案,用于通过少量测量来学习量子态的性质。具体而言,我们提出了一种由一维随机量子电路的深度调制的随机测量方案。该方案在基于随机泡利测量和随机克利福德测量的两种已知经典影子方案之间进行插值。我们关注深度在系统大小中按对数比例缩放的情况,并提供证据表明,这既保留了两种极端方案中理想的样本复杂度特性,同时在实验上也是可行的。我们提出了针对两个关键任务的方法;从生成的经典影子中估计某些可观测量的期望值,以及计算深度调制影子范数的上界,从而为输出估计的准确性提供严格保证。我们通过整合来自影子估计、随机电路和张量网络的工具得出了我们的研究结果。