Suppr超能文献

存在噪声时经典影子的最优旋转深度

Optimal Twirling Depth for Classical Shadows in the Presence of Noise.

作者信息

Rozon Pierre-Gabriel, Bao Ning, Agarwal Kartiek

机构信息

Physics Department, <a href="https://ror.org/01pxwe438">McGill University</a>, Montréal, Québec H3A 2T8, Canada.

<a href="https://ror.org/04t5xt781">Northeastern University</a>, Boston, Massachusetts, USA.

出版信息

Phys Rev Lett. 2024 Sep 27;133(13):130803. doi: 10.1103/PhysRevLett.133.130803.

Abstract

The classical shadows protocol is an efficient strategy for estimating properties of an unknown state ρ using a small number of state copies and measurements. In its original form, it involves twirling the state with unitaries from some ensemble and measuring the twirled state in a fixed basis. It was recently shown that for computing local properties, optimal sample complexity (copies of the state required) is remarkably achieved for unitaries drawn from shallow depth circuits composed of local entangling gates, as opposed to purely local (zero depth) or global twirling (infinite depth) ensembles. Here, we consider the sample complexity as a function of the depth of the circuit, in the presence of noise. We find that this noise has important implications for determining the optimal twirling ensemble. Under fairly general conditions, we (i) show that any single-site noise can be accounted for using a depolarizing noise channel with an appropriate damping parameter f, (ii) compute thresholds f_{th} at which optimal twirling reduces to local twirling for Pauli operators, (iii) nth order Renyi entropies (n≥2), and (iv) provide a meaningful upper bound t_{max} on the optimal circuit depth for any finite noise strength f, which applies to observables and entanglement entropy measurements. These thresholds strongly constrain the search for optimal strategies to implement shadow tomography and are easily tailored to the experimental system at hand.

摘要

经典影子协议是一种利用少量状态副本和测量来估计未知状态ρ属性的有效策略。在其原始形式中,它涉及用来自某个系综的酉矩阵对状态进行旋转,并在固定基下测量旋转后的状态。最近有研究表明,对于计算局部属性,从由局部纠缠门组成的浅深度电路中抽取的酉矩阵能显著实现最优样本复杂度(所需的状态副本数),这与纯局部(零深度)或全局旋转(无限深度)系综不同。在此,我们考虑在存在噪声的情况下,样本复杂度作为电路深度的函数。我们发现这种噪声对确定最优旋转系综具有重要意义。在相当一般的条件下,我们(i)表明任何单比特噪声都可以用具有适当阻尼参数f的去极化噪声信道来描述,(ii)计算出对于泡利算符、(iii)n阶雷尼熵(n≥2),最优旋转简化为局部旋转时的阈值f_th,以及(iv)为任何有限噪声强度f提供最优电路深度的一个有意义的上界t_max,该上界适用于可观测量和纠缠熵测量。这些阈值强烈限制了寻找实现影子层析成像的最优策略的范围,并且很容易根据手头的实验系统进行调整。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验