Department of Physics, Stanford University, Stanford, California 94305, USA.
Phys Rev Lett. 2023 Jun 9;130(23):230403. doi: 10.1103/PhysRevLett.130.230403.
Classical shadows are a powerful method for learning many properties of quantum states in a sample-efficient manner, by making use of randomized measurements. Here we study the sample complexity of learning the expectation value of Pauli operators via "shallow shadows," a recently proposed version of classical shadows in which the randomization step is effected by a local unitary circuit of variable depth t. We show that the shadow norm (the quantity controlling the sample complexity) is expressed in terms of properties of the Heisenberg time evolution of operators under the randomizing ("twirling") circuit-namely the evolution of the weight distribution characterizing the number of sites on which an operator acts nontrivially. For spatially contiguous Pauli operators of weight k, this entails a competition between two processes: operator spreading (whereby the support of an operator grows over time, increasing its weight) and operator relaxation (whereby the bulk of the operator develops an equilibrium density of identity operators, decreasing its weight). From this simple picture we derive (i) an upper bound on the shadow norm which, for depth t∼log(k), guarantees an exponential gain in sample complexity over the t=0 protocol in any spatial dimension, and (ii) quantitative results in one dimension within a mean-field approximation, including a universal subleading correction to the optimal depth, found to be in excellent agreement with infinite matrix product state numerical simulations. Our Letter connects fundamental ideas in quantum many-body dynamics to applications in quantum information science, and paves the way to highly optimized protocols for learning different properties of quantum states.
经典阴影是一种强大的方法,可以通过随机测量以高效的方式学习样本中的量子态的许多属性。在这里,我们研究了通过“浅层阴影”(一种最近提出的经典阴影版本)学习 Pauli 算符的期望值的样本复杂度,其中随机化步骤由可变深度 t 的局部幺正电路来实现。我们表明,阴影范数(控制样本复杂度的量)可以表示为操作符在随机化(“旋转”)电路下的海森堡时间演化的性质,即表征操作符非平凡作用的站点数的权重分布的演化。对于权重为 k 的空间连续 Pauli 算符,这涉及两种过程之间的竞争:算符扩展(算子的支持随着时间的推移而增长,从而增加其权重)和算子松弛(算子的大部分发展出一个平衡的单位算子密度,从而降低其权重)。从这个简单的图景中,我们推导出了(i)一个关于阴影范数的上界,对于深度 t∼log(k),在任何空间维度下,都保证了样本复杂度相对于 t=0 协议的指数增益,(ii)在平均场近似下的一维定量结果,包括对最优深度的普遍次优修正,与无限矩阵乘积态数值模拟发现的结果非常吻合。我们的信件将量子多体动力学的基本思想与量子信息科学的应用联系起来,并为学习量子态的不同性质的高度优化协议铺平了道路。