Suppr超能文献

基于惯性测量单元的步态分析方法用于评估跌倒风险相对于传统方法的验证

Validation of an IMU-Based Gait Analysis Method for Assessment of Fall Risk Against Traditional Methods.

作者信息

Garcia-de-Villa Sara, Ruiz Luisa Ruiz, Neira Guillermo Garcia-Villamil, Alvarez Marta Neira, Huertas-Hoyas Elisabet, Del-Ama Antonio J, Rodriguez Maria Cristina, Seco Fernando, Jimenez Antonio R

出版信息

IEEE J Biomed Health Inform. 2025 Jan;29(1):107-117. doi: 10.1109/JBHI.2024.3434973. Epub 2025 Jan 7.

Abstract

Falls are a severe problem in older adults, often resulting in severe consequences such as injuries or loss of consciousness. It is crucial to screen fall risk in order to prescribe appropriate therapies that can potentially prevent falls. Identifying individuals who have experienced falls in the past, commonly known as fallers, is used to evaluate fall risk, as a prior fall indicates a higher likelihood of future falls. The methods that have the most support from evidence are Gait Speed (GS) and Time Up and Go (TUG), which use specific cut-off values to evaluate the fall risk. There have been proposals for alternative methods that use wearable sensor technology to improve fall risk assessment. Although these technological alternatives are promising, further research is necessary to validate their use in clinical settings. In this study, we propose a method for identifying fallers based on a Support Vector Machine (SVM) classifier. The inputs for the classifier are the gait parameters obtained from a 30-minute walk recorded using an Inertial Measurement Unit (IMU) placed at the foot of patients. We validated our proposed method using a sample of 157 patients aged over 70 years. Our findings indicate significant differences (p<0.05) in stride speed, clearance, angular velocity, acceleration, and coefficient of variability among steps between fallers and non-fallers. The proposed method demonstrates the its potential to classify fallers with an accuracy of 79.6%, slightly outperforming the GS method which provides an accuracy of 77.0%, and also overcomes its dependency on the cut-off speed to determine fallers. This method could be valuable in detecting fallers during long-term monitoring that does not require periodic evaluations in a clinical setting.

摘要

跌倒在老年人中是一个严重问题,常常会导致诸如受伤或意识丧失等严重后果。筛查跌倒风险至关重要,以便开出可能预防跌倒的适当治疗方案。识别过去曾经历过跌倒的个体(通常称为跌倒者)用于评估跌倒风险,因为既往跌倒表明未来跌倒的可能性更高。证据支持最多的方法是步速(GS)和起立行走测试(TUG),它们使用特定的临界值来评估跌倒风险。有人提出了使用可穿戴传感器技术的替代方法来改善跌倒风险评估。尽管这些技术替代方案很有前景,但仍需要进一步研究以验证它们在临床环境中的应用。在本研究中,我们提出了一种基于支持向量机(SVM)分类器识别跌倒者的方法。该分类器的输入是从放置在患者脚部的惯性测量单元(IMU)记录的30分钟步行中获得的步态参数。我们使用157名70岁以上患者的样本验证了我们提出的方法。我们的研究结果表明,跌倒者和非跌倒者之间在步速、净空、角速度、加速度以及步间变异系数方面存在显著差异(p<0.05)。所提出的方法显示出对跌倒者进行分类的潜力,准确率为79.6%,略高于准确率为77.0%的GS方法,并且还克服了其对临界速度的依赖来确定跌倒者。这种方法在长期监测中检测跌倒者可能很有价值,而无需在临床环境中进行定期评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验