Suppr超能文献

QKSAN:一种量子内核自注意力网络。

QKSAN: A Quantum Kernel Self-Attention Network.

作者信息

Zhao Ren-Xin, Shi Jinjing, Li Xuelong

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10184-10195. doi: 10.1109/TPAMI.2024.3434974. Epub 2024 Nov 6.

Abstract

The Self-Attention Mechanism (SAM) excels at distilling important information from the interior of data to improve the computational efficiency of models. Nevertheless, many Quantum Machine Learning (QML) models lack the ability to distinguish the intrinsic connections of information like SAM, which limits their effectiveness on massive high-dimensional quantum data. To tackle the above issue, a Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM. Further, a Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques to release half of quantum resources by mid-circuit measurement, thereby bolstering both feasibility and adaptability. Simultaneously, the Quantum Kernel Self-Attention Score (QKSAS) with an exponentially large characterization space is spawned to accommodate more information and determine the measurement conditions. Eventually, four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST, where the QKSAS tests and correlation assessments between noise immunity and learning ability are executed on the best-performing sub-model. The paramount experimental finding is that the QKSAN subclasses possess the potential learning advantage of acquiring impressive accuracies exceeding 98.05% with far fewer parameters than classical machine learning models. Predictably, QKSAN lays the foundation for future quantum computers to perform machine learning on massive amounts of data while driving advances in areas such as quantum computer vision.

摘要

自注意力机制(SAM)擅长从数据内部提取重要信息,以提高模型的计算效率。然而,许多量子机器学习(QML)模型缺乏像SAM那样区分信息内在联系的能力,这限制了它们在海量高维量子数据上的有效性。为了解决上述问题,引入了量子核自注意力机制(QKSAM),将量子核方法(QKM)的数据表示优点与SAM的高效信息提取能力相结合。此外,基于QKSAM提出了量子核自注意力网络(QKSAN)框架,该框架巧妙地结合了延迟测量原理(DMP)和条件测量技术,通过中途测量释放一半的量子资源,从而增强了可行性和适应性。同时,生成了具有指数级大表征空间的量子核自注意力分数(QKSAS),以容纳更多信息并确定测量条件。最终,在PennyLane和IBM Qiskit平台上部署了四个QKSAN子模型,对MNIST和Fashion MNIST进行二分类,其中在性能最佳的子模型上执行了QKSAS测试以及抗噪声能力与学习能力之间的相关性评估。最重要的实验发现是,QKSAN子类具有潜在的学习优势,能够以比经典机器学习模型少得多的参数获得超过98.05%的令人印象深刻的准确率。可以预见,QKSAN为未来量子计算机在海量数据上执行机器学习奠定了基础,同时推动了量子计算机视觉等领域的发展。

相似文献

1
QKSAN: A Quantum Kernel Self-Attention Network.
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10184-10195. doi: 10.1109/TPAMI.2024.3434974. Epub 2024 Nov 6.
2
Quantum machine learning with differential privacy.
Sci Rep. 2023 Feb 11;13(1):2453. doi: 10.1038/s41598-022-24082-z.
3
Exponential concentration in quantum kernel methods.
Nat Commun. 2024 Jun 18;15(1):5200. doi: 10.1038/s41467-024-49287-w.
4
Clinical data classification with noisy intermediate scale quantum computers.
Sci Rep. 2022 Feb 3;12(1):1851. doi: 10.1038/s41598-022-05971-9.
5
Quantum AI simulator using a hybrid CPU-FPGA approach.
Sci Rep. 2023 May 12;13(1):7735. doi: 10.1038/s41598-023-34600-2.
6
Quantum Machine Learning Predicting ADME-Tox Properties in Drug Discovery.
J Chem Inf Model. 2023 Nov 13;63(21):6476-6486. doi: 10.1021/acs.jcim.3c01079. Epub 2023 Aug 21.
7
Supervised learning with quantum-enhanced feature spaces.
Nature. 2019 Mar;567(7747):209-212. doi: 10.1038/s41586-019-0980-2. Epub 2019 Mar 13.
8
Experimental kernel-based quantum machine learning in finite feature space.
Sci Rep. 2020 Jul 23;10(1):12356. doi: 10.1038/s41598-020-68911-5.
9
Quantum Machine Learning in Feature Hilbert Spaces.
Phys Rev Lett. 2019 Feb 1;122(4):040504. doi: 10.1103/PhysRevLett.122.040504.
10
Quantum machine learning beyond kernel methods.
Nat Commun. 2023 Jan 31;14(1):517. doi: 10.1038/s41467-023-36159-y.

引用本文的文献

1
A Static Sign Language Recognition Method Enhanced with Self-Attention Mechanisms.
Sensors (Basel). 2024 Oct 29;24(21):6921. doi: 10.3390/s24216921.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验