Suppr超能文献

用于模式复杂的异构信息网络的归纳元路径学习

Inductive Meta-Path Learning for Schema-Complex Heterogeneous Information Networks.

作者信息

Liu Shixuan, Fan Changjun, Cheng Kewei, Wang Yunfei, Cui Peng, Sun Yizhou, Liu Zhong

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10196-10209. doi: 10.1109/TPAMI.2024.3435055. Epub 2024 Nov 6.

Abstract

Heterogeneous Information Networks (HINs) are information networks with multiple types of nodes and edges. The concept of meta-path, i.e., a sequence of entity types and relation types connecting two entities, is proposed to provide the meta-level explainable semantics for various HIN tasks. Traditionally, meta-paths are primarily used for schema-simple HINs, e.g., bibliographic networks with only a few entity types, where meta-paths are often enumerated with domain knowledge. However, the adoption of meta-paths for schema-complex HINs, such as knowledge bases (KBs) with hundreds of entity and relation types, has been limited due to the computational complexity associated with meta-path enumeration. Additionally, effectively assessing meta-paths requires enumerating relevant path instances, which adds further complexity to the meta-path learning process. To address these challenges, we propose SchemaWalk, an inductive meta-path learning framework for schema-complex HINs. We represent meta-paths with schema-level representations to support the learning of the scores of meta-paths for varying relations, mitigating the need of exhaustive path instance enumeration for each relation. Further, we design a reinforcement-learning based path-finding agent, which directly navigates the network schema (i.e., schema graph) to learn policies for establishing meta-paths with high coverage and confidence for multiple relations. Extensive experiments on real data sets demonstrate the effectiveness of our proposed paradigm.

摘要

异构信息网络(HIN)是具有多种类型节点和边的信息网络。元路径的概念,即连接两个实体的实体类型和关系类型序列,被提出来为各种HIN任务提供元级可解释语义。传统上,元路径主要用于模式简单的HIN,例如只有少数实体类型的书目网络,其中元路径通常通过领域知识枚举。然而,对于模式复杂的HIN,如具有数百种实体和关系类型的知识库(KB),由于与元路径枚举相关的计算复杂性,元路径的采用受到限制。此外,有效地评估元路径需要枚举相关路径实例,这给元路径学习过程增加了进一步的复杂性。为了应对这些挑战,我们提出了SchemaWalk,一种用于模式复杂HIN的归纳元路径学习框架。我们用模式级表示来表示元路径,以支持对不同关系的元路径分数进行学习,减少对每个关系进行详尽路径实例枚举的需求。此外,我们设计了一个基于强化学习的路径寻找智能体,它直接在网络模式(即模式图)中导航,以学习为多个关系建立具有高覆盖率和置信度的元路径的策略。在真实数据集上的大量实验证明了我们提出的范式的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验