Suppr超能文献

VQGNet:一种用于复杂纹理钢表面的无监督缺陷检测方法

VQGNet: An Unsupervised Defect Detection Approach for Complex Textured Steel Surfaces.

作者信息

Yu Ronghao, Liu Yun, Yang Rui, Wu Yingna

机构信息

Center for Adaptive System Engineering, ShanghaiTech University, Shanghai 201210, China.

出版信息

Sensors (Basel). 2024 Sep 27;24(19):6252. doi: 10.3390/s24196252.

Abstract

Defect detection on steel surfaces with complex textures is a critical and challenging task in the industry. The limited number of defect samples and the complexity of the annotation process pose significant challenges. Moreover, performing defect segmentation based on accurate identification further increases the task's difficulty. To address this issue, we propose VQGNet, an unsupervised algorithm that can precisely recognize and segment defects simultaneously. A feature fusion method based on aggregated attention and a classification-aided module is proposed to segment defects by integrating different features in the original images and the anomaly maps, which direct the attention to the anomalous information instead of the irregular complex texture. The anomaly maps are generated more confidently using strategies for multi-scale feature fusion and neighbor feature aggregation. Moreover, an anomaly generation method suitable for grayscale images is introduced to facilitate the model's learning on the anomalous samples. The refined anomaly maps and fused features are both input into the classification-aided module for the final classification and segmentation. VQGNet achieves state-of-the-art (SOTA) performance on the industrial steel dataset, with an I-AUROC of 99.6%, I-F1 of 98.8%, P-AUROC of 97.0%, and P-F1 of 80.3%. Additionally, ViT-Query demonstrates robust generalization capabilities in generating anomaly maps based on the Kolektor Surface-Defect Dataset 2.

摘要

在工业领域中,对具有复杂纹理的钢表面进行缺陷检测是一项至关重要且具有挑战性的任务。缺陷样本数量有限以及注释过程的复杂性带来了重大挑战。此外,基于准确识别进行缺陷分割进一步增加了任务的难度。为了解决这个问题,我们提出了VQGNet,一种能够同时精确识别和分割缺陷的无监督算法。提出了一种基于聚合注意力和分类辅助模块的特征融合方法,通过整合原始图像和异常图中的不同特征来分割缺陷,该方法将注意力引导到异常信息而不是不规则的复杂纹理上。使用多尺度特征融合和邻域特征聚合策略更可靠地生成异常图。此外,引入了一种适用于灰度图像的异常生成方法,以促进模型对异常样本的学习。经过细化的异常图和融合特征都输入到分类辅助模块中进行最终的分类和分割。VQGNet在工业钢数据集上达到了当前最优(SOTA)性能,I-AUROC为99.6%,I-F1为98.8%,P-AUROC为97.0%,P-F1为80.3%。此外,ViT-Query在基于Kolektor表面缺陷数据集2生成异常图方面展示了强大的泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验