Vadthya Raju, Fetrow Christopher, Oladoyin Olumide, Wu James, Ivanov Sergei, Wang You, Chen Dongchang, Zhou Xiao-Dong, Wei Shuya
Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico, 87131, United States.
Power Division, NASA Glenn Research Center, Cleveland, Ohio, 44135, United States.
ChemSusChem. 2025 Jan 14;18(2):e202400983. doi: 10.1002/cssc.202400983. Epub 2024 Sep 23.
Rechargeable aluminum batteries (RABs) have garnered extensive scientific attention as a promising alternative chemistry due to the inherent advantages associated with aluminum (Al) metal anodes, including their high theoretical capacities, cost-effectiveness, environmental friendliness, and inherent non-flammable properties. Nonetheless, the practical energy density of RABs is constrained by the electrolytes that support lower operational voltage windows. Herein, we report a ternary eutectic electrolyte composed of 1-ethyl-3-methylimidazolium chloride ([CCim]Cl):1-butyl-3-methylimidazolium chloride ([CCim]Cl):aluminum chloride (AlCl) for the application of RABs. The electrolyte exhibits a high operational potential window (3 V vs. Al/Al on SS 316) and high ionic conductivity (8.3 mS cm) while exhibiting only a low temperature glass transition at -65 °C suitable for all-climate conditions. Al||graphene nanoplatelets cell delivers a high capacity of ~117 mAh/g, and ~43 mAh/g at a very high current densities of 1 A/g and 5 A/g, respectively. The cells render a reversible capacity of 20 mAh/g at -20 °C and 17 mAh/g at -40 °C, indicating their suitability for operation under extreme environmental conditions. We comprehensively evaluated the design and optimization of carbon paper-based battery systems. The ternary eutectic electrolyte demonstrates exceptional electrochemical performance, thus signifying its substantial potential for utilization in high-performance energy storage systems in all climates.
可充电铝电池(RABs)因其铝(Al)金属阳极所具有的固有优势,包括高理论容量、成本效益、环境友好性和固有的不易燃特性,作为一种有前景的替代化学体系已获得广泛的科学关注。尽管如此,RABs的实际能量密度受到支持较低工作电压窗口的电解质的限制。在此,我们报道了一种由1-乙基-3-甲基咪唑氯盐([CCim]Cl):1-丁基-3-甲基咪唑氯盐([CCim]Cl):氯化铝(AlCl)组成的三元共晶电解质,用于RABs。该电解质表现出高工作电位窗口(相对于在316不锈钢上的Al/Al约为3 V)和高离子电导率(约8.3 mS cm),同时仅在-65 °C表现出适合所有气候条件的低温玻璃化转变。Al||石墨烯纳米片电池分别在1 A/g和5 A/g的非常高电流密度下提供约117 mAh/g和约43 mAh/g的高容量。这些电池在-20 °C时具有20 mAh/g的可逆容量,在-40 °C时具有17 mAh/g的可逆容量,表明它们适用于极端环境条件下的运行。我们全面评估了基于碳纸的电池系统的设计和优化。这种三元共晶电解质展示出卓越的电化学性能,从而表明其在所有气候条件下的高性能储能系统中具有巨大的应用潜力。