Suppr超能文献

用于全固态锂电池的聚环氧乙烷电解质,采用具有增强倍率性能和循环稳定性的微米级硅/碳负极。

Poly(ethylene) Oxide Electrolytes for All-Solid-State Lithium Batteries Using Microsized Silicon/Carbon Anodes with Enhanced Rate Capability and Cyclability.

作者信息

Dong Panpan, Cha Younghwan, Zhang Xiahui, Zamora Julio, Song Min-Kyu

机构信息

Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China.

School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41018-41026. doi: 10.1021/acsami.4c07879. Epub 2024 Jul 29.

Abstract

Silicon (Si) has been widely studied as one of the promising anodes for lithium-ion batteries (LIBs) because of its ultrahigh theoretical specific capacity and low working voltage. However, the poor interfacial stability of silicon against conventional liquid electrolytes has largely impeded its practical use. Therefore, the combination of silicon-based anodes and solid electrolytes has attracted a great deal of attention in recent years. Here, we demonstrate three types of microsized porous silicon/carbon (Si/C) electrodes (i.e., pristine, prelithiated by liquid electrolyte, and preinfiltrated by polymer electrolyte) that are paired with poly(ethylene) oxide (PEO)-based electrolytes for all-solid-state lithium batteries (ASSLBs). We found that when compared with ionic conductivity, the mechanical stability of the PEO electrolyte dominates the electrochemical performance of ASSLBs using Si/C electrodes at elevated temperature. Additionally, both prelithiated and preinfiltrated Si/C electrodes show higher specific capacity in comparison to the pristine electrode, which is attributed to continuous lithium-ion conducting pathways within the electrode and thus improved utilization of active material. Moreover, owing to good interfacial lithium-ion transport in the electrode, a solid-state half-cell with preinfiltrated Si/C electrode and PEO-lithium bis (trifluoromethanesulfonyl)imide electrolyte delivers a specific capacity of ∼1,000 mAh g after 100 cycles under 800 mA g at 60 °C with average Coulombic efficiency >98.9%. This work provides a strategy for rationally designing the microstructure of silicon-based electrodes with solid electrolytes for high-performance all-solid-state lithium batteries.

摘要

硅(Si)因其超高的理论比容量和低工作电压,作为锂离子电池(LIBs)有前景的负极材料之一已得到广泛研究。然而,硅与传统液体电解质之间较差的界面稳定性在很大程度上阻碍了其实际应用。因此,近年来硅基负极与固体电解质的结合受到了广泛关注。在此,我们展示了三种微米尺寸的多孔硅/碳(Si/C)电极(即原始的、通过液体电解质预锂化的和通过聚合物电解质预浸润的),它们与基于聚环氧乙烷(PEO)的电解质配对用于全固态锂电池(ASSLBs)。我们发现,与离子电导率相比,PEO电解质的机械稳定性在高温下主导了使用Si/C电极的ASSLBs的电化学性能。此外,与原始电极相比,预锂化和预浸润的Si/C电极均表现出更高的比容量,这归因于电极内连续的锂离子传导路径,从而提高了活性材料的利用率。而且,由于电极中良好的界面锂离子传输,一个具有预浸润Si/C电极和PEO - 双(三氟甲磺酰)亚胺锂电解质的固态半电池在60℃、800 mA g下循环100次后,比容量达到约1000 mAh g,平均库仑效率>98.9%。这项工作为合理设计用于高性能全固态锂电池的含固体电解质的硅基电极微观结构提供了一种策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验