Suppr超能文献

使用可穿戴运动传感器和人工神经网络自动检测强直发作。

Automated detection of tonic seizures using wearable movement sensor and artificial neural network.

机构信息

Department of Clinical Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark.

Department of Clinical Medicine, Aarhus University and Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.

出版信息

Epilepsia. 2024 Sep;65(9):e170-e174. doi: 10.1111/epi.18077. Epub 2024 Jul 30.

Abstract

Although several validated wearable devices are available for detection of generalized tonic-clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3-46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%-100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large-scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.

摘要

尽管有几种经过验证的可穿戴设备可用于检测全身性强直阵挛发作,但自动检测强直发作仍然是一个挑战。在这项 1 期研究中,我们报告了一种使用可穿戴腕带运动传感器(加速度计和陀螺仪)自动检测有明显临床症状的强直发作的人工神经网络 (ANN) 模型的开发和验证。本研究前瞻性记录的数据集包括 15 名患者(7 名男性,年龄 3-46 岁,中位数= 19 岁)的 70 次强直发作。我们训练了一个 ANN 模型来检测强直发作。独立的测试数据集包括夜间记录,包括来自 3 名患者的 10 次强直发作以及来自 3 名无发作患者的额外(干扰)数据。该 ANN 模型以 100%的灵敏度(95%置信区间= 69%-100%)和平均 0.16/夜的假警率可靠地检测到有明显临床症状的夜间强直发作。平均检测潜伏期为 14.1 秒(中位数= 10 秒),最长为 47 秒。这些数据表明,使用 ANN 可以可靠地使用运动传感器检测夜间强直发作。需要进行大规模、多中心前瞻性(第 3 阶段)试验,以提供该设备和检测算法的临床实用性的有力证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验