Hung Ka-Lung, Cheung Leong-Hung, Ren Yikun, Chau Ming-Hin, Lam Yan-Yi, Kajitani Takashi, Leung Franco King-Chi
The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
Beilstein J Org Chem. 2024 Jul 15;20:1590-1603. doi: 10.3762/bjoc.20.142. eCollection 2024.
In the design of photoharvesting and photoresponsive supramolecular systems in aqueous medium, the fabrication of amphiphilic photoswitches enables a noninvasive functional response through photoirradiation. Although most aqueous supramolecular assemblies are driven by high-energy and biodamaging UV light, we have previously reported a design of amphiphilic donor-acceptor Stenhouse adducts (DASAs) controlled by white light. Herein, we present a series of DASA amphiphiles (DAs) with minor structural modifications on the alkyl linker chain length connecting the DASA motif with the hydrophilic moiety. The excellent photoswitchability in organic medium and the photoresponsiveness in aqueous medium, driven by visible light, were investigated by UV-vis absorption spectroscopy. The assembled supramolecular nanostructures were confirmed by electron microscopy, while the supramolecular packing was revealed by X-ray diffraction analysis. Upon visible-light irradiation, significant transformations of the DA geometry enabled transformations of the supramolecular assemblies on a microscopic scale, subsequently disassembling macroscopic soft scaffolds of DAs. The current work shows promising use for the fabrication of visible-light-controlled macroscopic scaffolds, offering the next generation of biomedical materials with visible-light-controlled microenvironments and future soft-robotic systems.
在水性介质中光捕获和光响应超分子体系的设计中,两亲性光开关的制备能够通过光照射实现非侵入性的功能响应。尽管大多数水性超分子组装体是由高能且具有生物损伤性的紫外光驱动的,但我们之前报道过一种由白光控制的两亲性供体-受体施滕豪斯加合物(DASAs)的设计。在此,我们展示了一系列在连接DASA基序与亲水性部分的烷基连接链长度上有微小结构修饰的DASA两亲物(DAs)。通过紫外-可见吸收光谱研究了它们在有机介质中的优异光开关性能以及在水性介质中由可见光驱动的光响应性。通过电子显微镜确认了组装的超分子纳米结构,同时通过X射线衍射分析揭示了超分子堆积情况。在可见光照射下,DA几何结构的显著转变使得超分子组装体在微观尺度上发生转变,随后拆解了DAs的宏观软支架。当前的工作表明在可见光控制的宏观支架制造方面具有广阔前景,有望提供具有可见光控制微环境的下一代生物医学材料以及未来的软机器人系统。