Zhu Weicheng, Xu Sheng, Liu Catherine, Li Yehua
Amazon Inc. Seattle WA, USA.
Global Statistics and Data Science, BeiGene Co., Ltd., China.
Scand Stat Theory Appl. 2023 Mar;50(1):266-295. doi: 10.1111/sjos.12583. Epub 2022 Mar 13.
We model the Alzheimer's Disease-related phenotype response variables observed on irregular time points in longitudinal Genome-Wide Association Studies as sparse functional data and propose nonparametric test procedures to detect functional genotype effects while controlling the confounding effects of environmental covariates. Our new functional analysis of covariance tests are based on a seemingly unrelated kernel smoother, which takes into account the within-subject temporal correlations, and thus enjoy improved power over existing functional tests. We show that the proposed test combined with a uniformly consistent nonparametric covariance function estimator enjoys the Wilks phenomenon and is minimax most powerful. Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, where an application of the proposed test lead to the discovery of new genes that may be related to Alzheimer's Disease.
我们将纵向全基因组关联研究中在不规则时间点观察到的与阿尔茨海默病相关的表型反应变量建模为稀疏函数数据,并提出非参数检验程序,以在控制环境协变量的混杂效应的同时检测功能基因型效应。我们新的协方差函数分析检验基于一个看似不相关的核平滑器,该平滑器考虑了个体内部的时间相关性,因此比现有的函数检验具有更高的功效。我们表明,所提出的检验与一致的非参数协方差函数估计器相结合,具有威尔克斯现象,并且是极小极大最强大的。本文编写中使用的数据来自阿尔茨海默病神经影像倡议(ADNI)数据库,所提出检验的应用导致发现了可能与阿尔茨海默病相关的新基因。