Suppr超能文献

功能基因组全基因组关联分析(FGWAS)。

FGWAS: Functional genome wide association analysis.

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, University of Southern California, Marina del Rey, CA, USA.

出版信息

Neuroimage. 2017 Oct 1;159:107-121. doi: 10.1016/j.neuroimage.2017.07.030. Epub 2017 Jul 20.

Abstract

Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs.

摘要

功能表型(例如皮质下表面代表),在成像遗传学研究中经常出现,已被用于检测复杂遗传性神经精神和神经退行性疾病的潜在基因。然而,现有的统计方法在很大程度上忽略了功能特征(例如功能平滑度和相关性)。本文旨在开发一种功能全基因组关联分析(FGWAS)框架,以有效地对功能表型进行全基因组分析。FGWAS 由三个组件组成:多变量变系数模型、全局确定独立性筛选程序和检验程序。与标准多变量回归模型相比,多变量变系数模型通过整合平滑系数函数和功能主成分分析,明确地对功能表型的功能特征进行建模。在统计学上,与现有的全基因组关联研究(GWAS)方法相比,FGWAS 可以大大提高发现影响大脑结构和功能的重要遗传变异的检测能力。模拟研究表明,FGWAS 在控制总体错误率的情况下,在搜索极其大的搜索空间中的稀疏信号方面优于现有的 GWAS 方法。我们已成功将 FGWAS 应用于来自阿尔茨海默病神经影像学倡议的 708 名受试者、左右海马表面 30000 个顶点和 501584 个 SNP 的大规模分析。

相似文献

1
FGWAS: Functional genome wide association analysis.
Neuroimage. 2017 Oct 1;159:107-121. doi: 10.1016/j.neuroimage.2017.07.030. Epub 2017 Jul 20.
2
FVGWAS: Fast voxelwise genome wide association analysis of large-scale imaging genetic data.
Neuroimage. 2015 Sep;118:613-27. doi: 10.1016/j.neuroimage.2015.05.043. Epub 2015 May 27.
3
Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model.
IEEE Trans Biomed Eng. 2019 Jan;66(1):165-175. doi: 10.1109/TBME.2018.2824725. Epub 2018 Apr 9.
4
Detecting time-varying genetic effects in Alzheimer's disease using a longitudinal GWAS model.
bioRxiv. 2023 Oct 17:2023.10.17.562756. doi: 10.1101/2023.10.17.562756.
6
A dynamic model for genome-wide association studies.
Hum Genet. 2011 Jun;129(6):629-39. doi: 10.1007/s00439-011-0960-6. Epub 2011 Feb 4.
7
Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.
BMC Bioinformatics. 2013;14 Suppl 16(Suppl 16):S6. doi: 10.1186/1471-2105-14-S16-S6. Epub 2013 Oct 22.
8
Smooth-Threshold Multivariate Genetic Prediction with Unbiased Model Selection.
Genet Epidemiol. 2016 Apr;40(3):233-43. doi: 10.1002/gepi.21958. Epub 2016 Mar 6.
9
Genome-wide association analysis of secondary imaging phenotypes from the Alzheimer's disease neuroimaging initiative study.
Neuroimage. 2017 Feb 1;146:983-1002. doi: 10.1016/j.neuroimage.2016.09.055. Epub 2016 Oct 4.

引用本文的文献

1
Sex-stratified genome-wide association meta-analysis of major depressive disorder.
Nat Commun. 2025 Aug 26;16(1):7960. doi: 10.1038/s41467-025-63236-1.
2
S-GMAS: Genome-Wide Mediation Analysis With Brain Subcortical Shape Mediators.
Hum Brain Mapp. 2025 Aug 1;46(11):e70297. doi: 10.1002/hbm.70297.
3
Sex-stratified genome-wide association meta-analysis of Major Depressive Disorder.
medRxiv. 2025 May 6:2025.05.05.25326699. doi: 10.1101/2025.05.05.25326699.
4
A PARTIALLY FUNCTIONAL LINEAR REGRESSION FRAMEWORK FOR INTEGRATING GENETIC, IMAGING, AND CLINICAL DATA.
Ann Appl Stat. 2024 Mar;18(1):704-728. doi: 10.1214/23-aoas1808. Epub 2024 Jan 31.
6
Minimax Powerful Functional Analysis of Covariance Tests: with Application to Longitudinal Genome-Wide Association Studies.
Scand Stat Theory Appl. 2023 Mar;50(1):266-295. doi: 10.1111/sjos.12583. Epub 2022 Mar 13.
7
A multivariate to multivariate approach for voxel-wise genome-wide association analysis.
Stat Med. 2024 Sep 10;43(20):3862-3880. doi: 10.1002/sim.10101. Epub 2024 Jun 24.
8
FPLS-DC: functional partial least squares through distance covariance for imaging genetics.
Bioinformatics. 2024 Mar 29;40(4). doi: 10.1093/bioinformatics/btae173.
9
Merging or ensembling: integrative analysis in multiple neuroimaging studies.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujae003.
10
Editorial: Modern statistical learning strategies in imaging genetics, volume II.
Front Neurosci. 2023 Dec 6;17:1337411. doi: 10.3389/fnins.2023.1337411. eCollection 2023.

本文引用的文献

1
Generalized reduced rank latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications.
Neuroimage. 2017 Jan 1;144(Pt A):35-57. doi: 10.1016/j.neuroimage.2016.08.027. Epub 2016 Sep 22.
3
Association Tests for Rare Variants.
Annu Rev Genomics Hum Genet. 2016 Aug 31;17:117-30. doi: 10.1146/annurev-genom-083115-022609. Epub 2016 Apr 21.
5
FVGWAS: Fast voxelwise genome wide association analysis of large-scale imaging genetic data.
Neuroimage. 2015 Sep;118:613-27. doi: 10.1016/j.neuroimage.2015.05.043. Epub 2015 May 27.
6
Hippocampal transcriptome-guided genetic analysis of correlated episodic memory phenotypes in Alzheimer's disease.
Front Genet. 2015 Mar 26;6:117. doi: 10.3389/fgene.2015.00117. eCollection 2015.
7
Massively expedited genome-wide heritability analysis (MEGHA).
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2479-84. doi: 10.1073/pnas.1415603112. Epub 2015 Feb 9.
8
Common genetic variants influence human subcortical brain structures.
Nature. 2015 Apr 9;520(7546):224-9. doi: 10.1038/nature14101. Epub 2015 Jan 21.
9
A kernel machine method for detecting effects of interaction between multidimensional variable sets: an imaging genetics application.
Neuroimage. 2015 Apr 1;109:505-514. doi: 10.1016/j.neuroimage.2015.01.029. Epub 2015 Jan 16.
10
Spatially Varying Coefficient Model for Neuroimaging Data with Jump Discontinuities.
J Am Stat Assoc. 2014 Jul;109(507):1084-1098. doi: 10.1080/01621459.2014.881742.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验