Lu Zhen-Hui, Yang Ming, Pan Chen-Hui, Zheng Pei-Yong, Zhang Shun-Xian
Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
Sci One Health. 2022 Nov 23;1:100004. doi: 10.1016/j.soh.2022.100004. eCollection 2022 Nov.
Despite the advent of new diagnostics, drugs and regimens, multi-drug resistant pulmonary tuberculosis (MDR-PTB) remains a global health threat. It has a long treatment cycle, low cure rate and heavy disease burden. Factors such as demographics, disease characteristics, lung imaging, biomarkers, therapeutic schedule and adherence to medications are associated with MDR-PTB prognosis. However, thus far, the majority of existing studies have focused on predicting treatment outcomes through static single-scale or low dimensional information. Hence, multi-modal deep learning based on dynamic data for multiple dimensions can provide a deeper understanding of personalized treatment plans to aid in the clinical management of patients.
尽管出现了新的诊断方法、药物和治疗方案,但耐多药肺结核(MDR-PTB)仍然是全球健康威胁。它治疗周期长、治愈率低且疾病负担重。人口统计学、疾病特征、肺部影像学、生物标志物、治疗方案和药物依从性等因素与耐多药肺结核的预后相关。然而,到目前为止,大多数现有研究都集中在通过静态单尺度或低维信息预测治疗结果。因此,基于多维度动态数据的多模态深度学习可以更深入地理解个性化治疗方案,以帮助对患者进行临床管理。