Suppr超能文献

基于多维度和多层次时间数据的多模态深度学习可以增强对耐多药肺结核患者的预后预测。

Multi-modal deep learning based on multi-dimensional and multi-level temporal data can enhance the prognostic prediction for multi-drug resistant pulmonary tuberculosis patients.

作者信息

Lu Zhen-Hui, Yang Ming, Pan Chen-Hui, Zheng Pei-Yong, Zhang Shun-Xian

机构信息

Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.

出版信息

Sci One Health. 2022 Nov 23;1:100004. doi: 10.1016/j.soh.2022.100004. eCollection 2022 Nov.

Abstract

Despite the advent of new diagnostics, drugs and regimens, multi-drug resistant pulmonary tuberculosis (MDR-PTB) remains a global health threat. It has a long treatment cycle, low cure rate and heavy disease burden. Factors such as demographics, disease characteristics, lung imaging, biomarkers, therapeutic schedule and adherence to medications are associated with MDR-PTB prognosis. However, thus far, the majority of existing studies have focused on predicting treatment outcomes through static single-scale or low dimensional information. Hence, multi-modal deep learning based on dynamic data for multiple dimensions can provide a deeper understanding of personalized treatment plans to aid in the clinical management of patients.

摘要

尽管出现了新的诊断方法、药物和治疗方案,但耐多药肺结核(MDR-PTB)仍然是全球健康威胁。它治疗周期长、治愈率低且疾病负担重。人口统计学、疾病特征、肺部影像学、生物标志物、治疗方案和药物依从性等因素与耐多药肺结核的预后相关。然而,到目前为止,大多数现有研究都集中在通过静态单尺度或低维信息预测治疗结果。因此,基于多维度动态数据的多模态深度学习可以更深入地理解个性化治疗方案,以帮助对患者进行临床管理。

相似文献

本文引用的文献

4
One Health: new evaluation framework launched.“同一健康”:新评估框架发布。
Nature. 2022 Apr;604(7907):625. doi: 10.1038/d41586-022-01108-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验