Suppr超能文献

使用放射组学模型对软组织肉瘤进行分级:成像方法的选择及与传统视觉分析的比较

Grading of soft tissues sarcomas using radiomics models: Choice of imaging methods and comparison with conventional visual analysis.

作者信息

Chen Bailiang, Steinberger Olivier, Fenioux Roman, Duverger Quentin, Lambrou Tryphon, Dodin Gauthier, Blum Alain, Gondim Teixeira Pedro Augusto

机构信息

IADI, Inserm 1254 Nancy, University of Lorraine, Nancy, France.

Inserm CIC-IT 1433, University of Lorraine, Nancy, France.

出版信息

Res Diagn Interv Imaging. 2022 Jul 2;2:100009. doi: 10.1016/j.redii.2022.100009. eCollection 2022 Jun.

Abstract

PURPOSE

To determine which combination of imaging modalities/contrast, radiomics models, and how many features provides the best diagnostic performance for the differentiation between low- and high-grade soft tissue sarcomas (STS) using a radiomics approach.

METHODS

MRI and CT from 39 patients with a histologically confirmed STS were prospectively analyzed. Images were evaluated both quantitatively by radiomics models and qualitatively by visual evaluation (used as reference) for grading (low-grade vs high-grade). In radiomics analysis, 120 radiomic features were extracted and contributed into three models: least absolute shrinkage and selection operator with logistic regression(LASSO-LR), recursive feature elimination and cross-validation (RFECV-SVC) and analysis of variance with SVC (ANOVA-SVC). Those were applied to different combinations of imaging modalities acquisition, with and without contrast medium administration, as well as selected number of features.

RESULTS

Fat-saturated T2w (FS-T2w) MR images using RFECV-SVC radiomic models involving five features yielded the best results with mean sensitivity, specificity, and accuracy of 92% ± 10%, 78% ± 30%, and 89% ± 12%, respectively. The performance of radiomics was better than that of conventional analysis (67% accuracy) for STS grading. Combination of multiple contrast or imaging modalities did not increase the diagnostic performance.

CONCLUSION

FS-T2w MR images alone with a five-feature radiomics analysis usingh REFCV-SVC model may be able to provide sufficient diagnositic performance compared to conventional visual evaluation with multiple MRI contrast and CT imaging.

摘要

目的

采用放射组学方法确定哪种成像方式/对比剂组合、放射组学模型以及多少特征能为区分低级别和高级别软组织肉瘤(STS)提供最佳诊断性能。

方法

对39例经组织学证实为STS的患者的MRI和CT进行前瞻性分析。图像通过放射组学模型进行定量评估,并通过视觉评估(作为参考)进行定性评估以进行分级(低级别与高级别)。在放射组学分析中,提取120个放射组学特征并纳入三个模型:带逻辑回归的最小绝对收缩和选择算子(LASSO-LR)、递归特征消除和交叉验证(RFECV-SVC)以及带SVC的方差分析(ANOVA-SVC)。将这些模型应用于不同的成像方式采集组合,包括使用和不使用对比剂,以及选定数量的特征。

结果

使用包含五个特征的RFECV-SVC放射组学模型的脂肪饱和T2加权(FS-T2w)MR图像产生了最佳结果,平均灵敏度、特异性和准确率分别为92%±10%、78%±30%和89%±12%。对于STS分级,放射组学的性能优于传统分析(准确率67%)。多种对比剂或成像方式的组合并未提高诊断性能。

结论

与使用多种MRI对比剂和CT成像的传统视觉评估相比,单独使用FS-T2w MR图像并结合使用REFCV-SVC模型进行五特征放射组学分析可能能够提供足够的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e9c/11265381/b36016813746/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验