Suppr超能文献

通过下一代机器学习推动材料科学发展。

Advancing materials science through next-generation machine learning.

作者信息

Unni Rohit, Zhou Mingyuan, Wiecha Peter R, Zheng Yuebing

机构信息

Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Curr Opin Solid State Mater Sci. 2024 Jun;30. doi: 10.1016/j.cossms.2024.101157. Epub 2024 Apr 3.

Abstract

For over a decade, machine learning (ML) models have been making strides in computer vision and natural language processing (NLP), demonstrating high proficiency in specialized tasks. The emergence of large-scale language and generative image models, such as ChatGPT and Stable Diffusion, has significantly broadened the accessibility and application scope of these technologies. Traditional predictive models are typically constrained to mapping input data to numerical values or predefined categories, limiting their usefulness beyond their designated tasks. In contrast, contemporary models employ representation learning and generative modeling, enabling them to extract and encode key insights from a wide variety of data sources and decode them to create novel responses for desired goals. They can interpret queries phrased in natural language to deduce the intended output. In parallel, the application of ML techniques in materials science has advanced considerably, particularly in areas like inverse design, material prediction, and atomic modeling. Despite these advancements, the current models are overly specialized, hindering their potential to supplant established industrial processes. Materials science, therefore, necessitates the creation of a comprehensive, versatile model capable of interpreting human-readable inputs, intuiting a wide range of possible search directions, and delivering precise solutions. To realize such a model, the field must adopt cutting-edge representation, generative, and foundation model techniques tailored to materials science. A pivotal component in this endeavor is the establishment of an extensive, centralized dataset encompassing a broad spectrum of research topics. This dataset could be assembled by crowdsourcing global research contributions and developing models to extract data from existing literature and represent them in a homogenous format. A massive dataset can be used to train a central model that learns the underlying physics of the target areas, which can then be connected to a variety of specialized downstream tasks. Ultimately, the envisioned model would empower users to intuitively pose queries for a wide array of desired outcomes. It would facilitate the search for existing data that closely matches the sought-after solutions and leverage its understanding of physics and material-behavior relationships to innovate new solutions when pre-existing ones fall short.

摘要

十多年来,机器学习(ML)模型在计算机视觉和自然语言处理(NLP)领域取得了长足进步,在特定任务中展现出了高度的熟练度。诸如ChatGPT和Stable Diffusion等大规模语言和生成图像模型的出现,显著拓宽了这些技术的可及性和应用范围。传统预测模型通常局限于将输入数据映射到数值或预定义类别,限制了其在指定任务之外的用途。相比之下,当代模型采用表示学习和生成建模,使其能够从各种数据源中提取和编码关键见解,并将其解码以针对预期目标创建新颖的响应。它们可以解释用自然语言表述的查询以推断出预期输出。与此同时,ML技术在材料科学中的应用取得了显著进展,特别是在逆设计、材料预测和原子建模等领域。尽管取得了这些进展,但当前的模型过于专业化,阻碍了它们取代既定工业流程的潜力。因此,材料科学需要创建一个全面、通用的模型,该模型能够解释人类可读的输入,直观地确定广泛的可能搜索方向,并提供精确的解决方案。为了实现这样一个模型,该领域必须采用针对材料科学量身定制的前沿表示、生成和基础模型技术。这一努力中的一个关键组成部分是建立一个广泛的、集中的数据集,涵盖广泛的研究主题。这个数据集可以通过众包全球研究贡献并开发模型以从现有文献中提取数据并以统一格式表示它们来组装。一个大规模的数据集可用于训练一个学习目标领域基础物理的中心模型,然后该模型可连接到各种专门的下游任务。最终,设想的模型将使用户能够直观地针对各种期望结果提出查询。它将有助于搜索与寻求的解决方案密切匹配的现有数据,并在现有解决方案不足时利用其对物理和材料行为关系的理解来创新新的解决方案。

相似文献

1
Advancing materials science through next-generation machine learning.通过下一代机器学习推动材料科学发展。
Curr Opin Solid State Mater Sci. 2024 Jun;30. doi: 10.1016/j.cossms.2024.101157. Epub 2024 Apr 3.
5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

1
Artificial Intelligence and Machine Learning for Materials.用于材料的人工智能与机器学习
Curr Opin Solid State Mater Sci. 2025 Jan;34. doi: 10.1016/j.cossms.2024.101202. Epub 2024 Oct 9.

本文引用的文献

1
ChatGPT is fun, but not an author.ChatGPT 很有趣,但不是作者。
Science. 2023 Jan 27;379(6630):313. doi: 10.1126/science.adg7879. Epub 2023 Jan 26.
3
Machine learning heat capacities.机器学习热容量
Nat Mater. 2022 Dec;21(12):1342-1343. doi: 10.1038/s41563-022-01410-2.
5
Deep learning: a new tool for photonic nanostructure design.深度学习:光子纳米结构设计的新工具。
Nanoscale Adv. 2020 Feb 12;2(3):1007-1023. doi: 10.1039/c9na00656g. eCollection 2020 Mar 17.
6
Machine-Learning Rationalization and Prediction of Solid-State Synthesis Conditions.固态合成条件的机器学习合理化与预测
Chem Mater. 2022 Aug 23;34(16):7323-7336. doi: 10.1021/acs.chemmater.2c01293. Epub 2022 Aug 5.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验