Hegde Ravi S
AB 6/212, Indian Institute of Technology Gandhinagar Gujarat 382355 India
Nanoscale Adv. 2020 Feb 12;2(3):1007-1023. doi: 10.1039/c9na00656g. eCollection 2020 Mar 17.
Early results have shown the potential of Deep Learning (DL) to disrupt the fields of optical inverse-design, particularly, the inverse design of nanostructures. In the last three years, the complexity of the optical nanostructure being designed and the sophistication of the employed DL methodology have steadily increased. This topical review comprehensively surveys DL based design examples from the nanophotonics literature. Notwithstanding the early success of this approach, its limitations, range of validity and its place among established design techniques remain to be assessed. The review also provides a perspective on the limitations of this approach and emerging research directions. It is hoped that this topical review may help readers to identify unaddressed problems, to choose an initial setup for a specific problem, and, to identify means to improve the performance of existing DL based workflows.
早期结果显示了深度学习(DL)在颠覆光学逆向设计领域,特别是纳米结构逆向设计方面的潜力。在过去三年中,所设计的光学纳米结构的复杂性以及所采用的深度学习方法的复杂性都在稳步增加。本专题综述全面调查了纳米光子学文献中基于深度学习的设计实例。尽管这种方法取得了早期成功,但其局限性、有效性范围以及在既定设计技术中的地位仍有待评估。该综述还对这种方法的局限性和新兴研究方向提供了一个视角。希望本专题综述能帮助读者识别未解决的问题,为特定问题选择初始设置,并识别提高现有基于深度学习的工作流程性能的方法。