Wei Xing, Zhang Zhijiang, Wei Bingqing, Zhang Qing
Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA.
Small. 2024 Nov;20(46):e2402422. doi: 10.1002/smll.202402422. Epub 2024 Jul 30.
Graphene oxide (GO)-based all-solid-state supercapacitors (SCs) provide an important complement to liquid- and gel-electrolyte-based SCs in a variety of applications, including flexible electronics. Still, their mediocre capacitance and complex fabrication methods hold back the realization of their full potential. Here, a simple fabrication of all-solid-state SCs with layered GO as a solid electrolyte and MXene as electrodes is demonstrated. The resultant SCs show excellent energy storage capacitance comparable to other MXene-based SCs using liquid electrolytes. The outperformance is attributed to extra interlayer spacing expansion and improved ion transport kinetics thanks to a synergistic water-absorbing effect due to the hydrophilicity of both MXene and GO in combination, which interestingly satisfies the intrinsic surface-dominated pseudocapacitive behavior of MXene. The application of this SC in humidity sensing has also been demonstrated to be fast responsive. The findings describe in this work provide a means of improving the capacitance performance using GO as a solid electrolyte with MXene as the electrodes and exploit the potential application as electronic elements for smart devices.
基于氧化石墨烯(GO)的全固态超级电容器(SCs)在包括柔性电子学在内的各种应用中,为基于液体和凝胶电解质的超级电容器提供了重要补充。尽管如此,它们中等的电容和复杂的制造方法阻碍了其全部潜力的实现。在此,展示了一种以层状GO作为固体电解质、MXene作为电极的全固态超级电容器的简单制造方法。所得超级电容器显示出与其他使用液体电解质的基于MXene的超级电容器相当的优异储能电容。这种优异性能归因于额外的层间距扩展以及由于MXene和GO的亲水性共同产生的协同吸水效应而改善的离子传输动力学,有趣的是,这满足了MXene固有的表面主导赝电容行为。这种超级电容器在湿度传感中的应用也已被证明具有快速响应。这项工作中描述的研究结果提供了一种使用GO作为固体电解质、MXene作为电极来提高电容性能的方法,并开发了其作为智能设备电子元件的潜在应用。