Ogawa Kunihiro, Jo Jungmin, Kim Junghee, Liao Longyong, Sangaroon Siriyaporn, Takada Eiji, Isobe Mitsutaka
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Japan.
The Graduate University for Advanced Studies, SOKENDAI, Toki, Japan.
Rev Sci Instrum. 2024 Jul 1;95(7). doi: 10.1063/5.0213697.
A scintillating fiber (Sci-Fi) detector for the middle neutron flux range was installed in KSTAR as part of a collaboration between the National Institute for Fusion Science and the Korea Institute of Fusion Energy. The detector could make relatively high-time-resolution measurements of secondary deuterium (D)-tritium (T) neutron fluxes to investigate the degradation of D-D-born triton confinement, which is crucial for demonstrating alpha particle confinement, particularly above 0.9 MA in KSTAR. The pulse-height spectrum of the Sci-Fi detector exhibited two peaks, the higher of which corresponded to D-T neutrons. A discrimination technique was applied to extract the D-T neutron signal, revealing the time evolution of the D-T neutron flux during relatively high plasma current discharges with a 50 ms temporal resolution. Future research will involve investigating the causes of the degradation of the triton burnup ratio above 0.9 MA in KSTAR.
作为日本国立聚变科学研究所和韩国聚变能源研究所合作项目的一部分,一台用于中等中子通量范围的闪烁光纤(Sci-Fi)探测器被安装在韩国超导托卡马克先进研究装置(KSTAR)中。该探测器能够对次级氘(D)-氚(T)中子通量进行相对高时间分辨率的测量,以研究由D-D反应产生的氚的约束退化情况,这对于证明α粒子约束至关重要,特别是在KSTAR中电流高于0.9兆安时。Sci-Fi探测器的脉冲高度谱呈现出两个峰值,其中较高的峰值对应于D-T中子。采用了一种甄别技术来提取D-T中子信号,从而揭示了在相对高的等离子体电流放电过程中D-T中子通量的时间演化,时间分辨率为50毫秒。未来的研究将涉及探究KSTAR中电流高于0.9兆安时氚燃烧率下降的原因。