Hannah Tyler J, Kirsch Tamina Z, Chitnis Saurabh S
Chemistry Department, Dalhousie University, 6243 Alumni Crescent, B3H4R2, Halifax, Nova Scotia, Canada.
Chemistry. 2024 Oct 11;30(57):e202402851. doi: 10.1002/chem.202402851. Epub 2024 Sep 23.
Geometrically-constrained pnictogen pincer complexes have emerged in recent years as platforms for unique stoichiometric and catalytic chemical transformations. These complexes feature dynamic conformations ranging from fully planar at the pnictogen centre to distorted-pyramidal geometries, as well as variation between phases. Although the valued reactivity of pnictogen pincer complexes is ascribed to their geometries, there is no unified model to explain the observed conformational outcomes across different ligands and pnictogen centres. Here we propose such a model through computational analysis of more than 1300 structures across 64 complexes (16 ligands and 4 heavy pnictogens), explaining the experimental observations and making new predictions. By looking at signatures of bond stability (bond lengths, Wiberg bond indices) and delocalization (NPA charges, Hirshfeld charges), our framework posits a pnictogen-based σ-bonding effect that favours pyramidalization and exists in competition with a ligand-based π-bonding effect that favours planarity. Variations in structure as a function of pnictogen identity, ligand tethering, electronics, and aromaticity can be reconciled with reference to a balance between these two opposing forces. Careful consideration of the σ/π-bonding effects may aid in the rational design of future pnictogen pincer complexes with predictable geometries and reactivities.
近年来,几何受限的氮族元素钳形配合物已成为独特化学计量和催化化学转化的平台。这些配合物具有动态构象,从氮族元素中心完全平面到扭曲的金字塔形几何结构,以及不同相之间的变化。尽管氮族元素钳形配合物的重要反应活性归因于它们的几何结构,但尚无统一模型来解释不同配体和氮族元素中心观察到的构象结果。在此,我们通过对64种配合物(16种配体和4种重氮族元素)的1300多个结构进行计算分析,提出了这样一个模型,解释了实验观察结果并做出了新的预测。通过观察键稳定性(键长、维伯格键指数)和离域化(NPA电荷、赫什菲尔德电荷)的特征,我们的框架提出了一种基于氮族元素的σ键效应,它有利于金字塔化,并与有利于平面性的基于配体的π键效应相互竞争。作为氮族元素特性、配体连接、电子学和芳香性函数的结构变化,可以根据这两种相反作用力之间的平衡来协调。仔细考虑σ/π键效应可能有助于合理设计未来具有可预测几何结构和反应活性的氮族元素钳形配合物。