Qiao Kangjia, Liang Jing, Guo Wei-Feng, Wei Yunpeng, Yu Kunjie, Hu Zhuo
IEEE J Biomed Health Inform. 2024 Jul 30;PP. doi: 10.1109/JBHI.2024.3435418.
Identifying the biomarkers from the personalized gene interaction network of individual patients is important for disease diagnosis. However, existing methods not only ignore the prior biomarkers for practical use but also ignore the observability of the entire system. Therefore, this paper proposes a new constrained multi-objective optimization-based temporal network observability model (CMTNO) to identify biomarkers, which not only requires minimizing the number of selected nodes including ordinary nodes and prior nodes (the first optimization objective) but also maximizing the number of selected prior nodes (the second optimization objective) on the premise of ensuring network observability (the constraint condition). Considering the temporal feature of cancer (patients belong to different stages and each patient contains one task), an experience learning-based constrained multi-objective evolutionary algorithm is designed to solve the CMTNO problems. The selected probabilities of ordinary nodes and prior nodes are treated as experience, stored in two separate archives and updated by the optimal solutions on each task. Experience utilization refers to using two archives to generate new initial populations for new patients, in order to improve the optimization efficiency of the algorithm. Besides, a two-step neighbor-based connectivity method is proposed to distinguish different nodes with similar connectivity to further improve the effectiveness of archives. The proposed model and algorithm are evaluated on three kinds of cancer patients' data under two kinds of network models, and results show their effectiveness in identifying effective biomarkers.
从个体患者的个性化基因相互作用网络中识别生物标志物对于疾病诊断至关重要。然而,现有方法不仅忽略了实际应用中的先验生物标志物,还忽略了整个系统的可观测性。因此,本文提出了一种基于约束多目标优化的时间网络可观测性模型(CMTNO)来识别生物标志物,该模型不仅要求在确保网络可观测性(约束条件)的前提下,最小化包括普通节点和先验节点在内的选定节点数量(第一个优化目标),还要求最大化选定先验节点的数量(第二个优化目标)。考虑到癌症的时间特征(患者属于不同阶段且每个患者包含一个任务),设计了一种基于经验学习的约束多目标进化算法来解决CMTNO问题。将普通节点和先验节点的选择概率作为经验,存储在两个单独的存档中,并通过每个任务的最优解进行更新。经验利用是指利用两个存档为新患者生成新的初始种群,以提高算法的优化效率。此外,提出了一种基于两步邻居的连通性方法来区分具有相似连通性的不同节点,以进一步提高存档的有效性。在两种网络模型下,对三类癌症患者数据进行了所提模型和算法的评估,结果表明它们在识别有效生物标志物方面的有效性。