Bakhshi Sichani Soroush, Khorshid Mehran, Yongabi Derick, Urbán Csongor Tibor, Schreurs Michiel, Verstrepen Kevin J, Lettinga Minne Paul, Schöning Michael J, Lieberzeit Peter, Wagner Patrick
Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium.
Laboratory for Genetics and Genomics, VIB - KU Leuven Center for Microbiology, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium.
ACS Sens. 2024 Aug 23;9(8):3967-3978. doi: 10.1021/acssensors.4c00732. Epub 2024 Jul 30.
This article reports on a bioanalytical sensor device that hosts three different transducer principles: impedance spectroscopy, quartz-crystal microbalance with dissipation monitoring, and the thermal-current-based heat-transfer method. These principles utilize a single chip, allowing one to perform either microbalance and heat transfer measurements in parallel or heat transfer and impedance measurements. When taking specific precautions, the three measurement modalities can even be used truly simultaneously. The probed parameters are distinctly different, so that one may speak about multiparametric or "orthogonal" sensing without crosstalk between the sensing circuits. Hence, this sensor allows one to identify which of these label-free sensing principles performs best for a given bioanalytical application in terms of a high signal amplitude and signal-to-noise ratio. As a proof-of-concept, the three-parameter sensor was validated by studying the spontaneous, collective detachment of eukaryotic cells in the presence of a temperature gradient between the QCM chip and the supernatant liquid. In addition to heat transfer, detachment can also be monitored by the impedance- and QCM-related signals. These features allow for the distinguishing between different yeast strains that differ in their flocculation genes, and the sensor device enables proliferation monitoring of yeast colonies over time.
本文报道了一种生物分析传感器装置,该装置采用了三种不同的换能器原理:阻抗谱、带耗散监测的石英晶体微天平以及基于热电流的热传递方法。这些原理利用单个芯片,使得人们能够并行进行微天平和热传递测量,或者热传递和阻抗测量。在采取特定预防措施时,这三种测量方式甚至可以真正同时使用。所探测的参数明显不同,因此可以在传感电路之间不存在串扰的情况下谈论多参数或“正交”传感。因此,这种传感器能够确定在高信号幅度和信噪比方面,这些无标记传感原理中的哪一种对于给定的生物分析应用表现最佳。作为概念验证,通过研究在石英晶体微天平芯片与上清液之间存在温度梯度的情况下真核细胞的自发集体脱离,对三参数传感器进行了验证。除了热传递之外,脱离还可以通过与阻抗和石英晶体微天平相关的信号进行监测。这些特性使得能够区分絮凝基因不同的不同酵母菌株,并且该传感器装置能够随时间监测酵母菌落的增殖情况。