Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, University Rey Juan Carlos, Móstoles, Madrid, Spain; Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Spain.
Department of Signal Theory and Communications, EIF, University Rey Juan Carlos, Fuenlabrada, Madrid, Spain.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 Dec 5;322:124819. doi: 10.1016/j.saa.2024.124819. Epub 2024 Jul 14.
Fast detection of viral infections is a key factor in the strategy for the prevention of epidemics expansion and follow-up. Hepatitis C is paradigmatic within viral infectious diseases and major challenges to elimination still remain. Near infrared spectroscopy (NIRS) is an inexpensive, clean, safe method for quickly detecting viral infection in transmission vectors, aiding epidemic prevention. Our objective is to evaluate the combined potential of machine learning and NIRS global molecular fingerprint (GMF) from biobank sera as an efficient method for HCV activity discrimination in serum. GMF of 151 serum biobank microsamples from hepatitis C patients were obtained with a FT-NIR spectrophotometer in reflectance mode. Multiple scatter correction, smoothing and Saviztsky-Golay second derivative were applied. Spectral analysis included Principal Component Analysis (PCA), Bootstrap and L1-penalized classification. Microsamples of 70 µl were sufficient for GMF acquisition. Bootstrap evidenced significant difference between HCV PCR positive and negative sera. PCA renders a neat discrimination between HCV PCR-positive and negative samples. PCA loadings together with L1-penalized classification allow the identification of discriminative bands. Active virus positive sera are associated to free molecular water, whereas water in solvation shells is associated to HCV negative samples. Divergences in the water matrix structure and the lipidome between HCV negative and positive sera, as well as the relevance of prooxidants and glucose metabolism are reported as potential biomarkers of viral activity. Our proof of concept demonstrates that NIRS GMF of hepatitis C patients' sera aided by machine learning allows for efficient discrimination of viral presence and simultaneous potential biomarker identification.
快速检测病毒感染是预防疫情扩散和后续跟踪的策略的关键因素。丙型肝炎是病毒性传染病的典型代表,消除该病仍面临重大挑战。近红外光谱(NIRS)是一种快速检测传播媒介中病毒感染的廉价、清洁、安全的方法,有助于预防疫情。我们的目标是评估机器学习和 NIRS 全局分子指纹(GMF)的组合潜力,从生物银行血清中作为一种有效的 HCV 活性鉴别方法。使用傅里叶变换近红外分光光度计以反射模式从 151 个丙型肝炎患者的血清生物银行微样本中获得 GMF。应用多次散射校正、平滑和 Savitzky-Golay 二阶导数。光谱分析包括主成分分析(PCA)、引导和 L1 惩罚分类。70µl 的微样本足以获得 GMF。引导证明了 HCV PCR 阳性和阴性血清之间存在显著差异。PCA 可清晰地区分 HCV PCR 阳性和阴性样本。PCA 加载与 L1 惩罚分类相结合可识别出具有判别力的波段。阳性病毒的血清与游离分子水相关,而处于溶剂化壳中的水与 HCV 阴性样本相关。丙型肝炎阴性和阳性血清之间的水基质结构和脂质组的差异,以及氧化剂和葡萄糖代谢的相关性被报道为病毒活性的潜在生物标志物。我们的概念验证表明,机器学习辅助的丙型肝炎患者血清 NIRS GMF 可有效区分病毒的存在,并同时识别潜在的生物标志物。