Suppr超能文献

基于压缩感知的低剂量计算机断层扫描重建算法综述。

Compressed-sensing-inspired reconstruction algorithms in low-dose computed tomography: A review.

机构信息

FSUE "Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics", Snezhinsk, Chelyabinsk Region 456770, Russia.

出版信息

Phys Med. 2024 Aug;124:104491. doi: 10.1016/j.ejmp.2024.104491. Epub 2024 Jul 29.

Abstract

BACKGROUND

Optimization of the dose the patient receives during scanning is an important problem in modern medical X-ray computed tomography (CT). One of the basic ways to its solution is to reduce the number of views. Compressed sensing theory helped promote the development of a new class of effective reconstruction algorithms for limited data CT. These compressed-sensing-inspired (CSI) algorithms optimize the Lp (0 ≤ p ≤ 1) norm of images and can accurately reconstruct CT tomograms from a very few views. The paper presents a review of the CSI algorithms and discusses prospects for their further use in commercial low-dose CT.

METHODS

Many literature references with the CSI algorithms have been were searched. To structure the material collected the author gives a classification framework within which he describes Lp regularization methods, the basic CSI algorithms that are used most often in few-view CT, and some of their derivatives. Lots of examples are provided to illustrate the use of the CSI algorithms in few-view and low-dose CT.

RESULTS

A list of the CSI algorithms is compiled from the literature search. For better demonstrativeness they are summarized in a table. The inference is done that already today some of the algorithms are capable of reconstruction from 20 to 30 views with acceptable quality and dose reduction by a factor of 10.

DISCUSSION

In conclusion the author discusses how soon the CSI reconstruction algorithms can be introduced in the practice of medical diagnosis and used in commercial CT scanners.

摘要

背景

在现代医学 X 射线计算机断层扫描(CT)中,优化患者在扫描过程中接受的剂量是一个重要问题。解决该问题的基本方法之一是减少视图数量。压缩感知理论促进了一类新的有效重建有限数据 CT 的算法的发展。这些受压缩感知启发的(CSI)算法优化了图像的 Lp(0≤p≤1)范数,可以从很少的视图准确重建 CT 断层图像。本文综述了 CSI 算法,并讨论了它们在商业低剂量 CT 中的进一步应用前景。

方法

搜索了许多带有 CSI 算法的文献参考资料。为了对收集到的材料进行结构化,作者给出了一个分类框架,在该框架中,他描述了 Lp 正则化方法、在少视图 CT 中最常用的基本 CSI 算法以及它们的一些衍生算法。提供了大量示例来说明 CSI 算法在少视图和低剂量 CT 中的应用。

结果

从文献检索中编译了 CSI 算法列表。为了更好地说明问题,将它们汇总在一个表格中。推断出,已经有一些算法能够以可接受的质量和 10 倍的剂量减少从 20 到 30 个视图进行重建。

讨论

最后,作者讨论了 CSI 重建算法在医疗诊断实践中引入和在商业 CT 扫描仪中使用的速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验