Suppr超能文献

基于知识图谱的痴呆症护理推荐系统:设计与评估研究。

A knowledge graph-based recommender system for dementia care: Design and evaluation study.

机构信息

School of Nursing, Peking University, Beijing, China; Peking University Health Science Centre for Evidence-Based Nursing: A Joanna Briggs Institute Affiliated Group, Beijing, China.

Department of Nursing, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.

出版信息

Int J Med Inform. 2024 Nov;191:105554. doi: 10.1016/j.ijmedinf.2024.105554. Epub 2024 Jul 20.

Abstract

BACKGROUND

Caring for people with dementia is perceived as one of the most challenging caring roles, so effective and practical support is essential. One such innovative approach to internet-based tailored health intervention is the use of recommender system.

OBJECTIVE

This study develops a dementia care intelligent recommender system (DCIRS) that can provide personalized and timely care recommendations for caregivers when they encounter difficult various care problems in people with dementia.

METHODS

The development process was divided into 3 stages. In stage 1, we complete the construction of the domain knowledge graph of dementia care. In stage 2, the established domain knowledge graph of dementia care was introduced into the recommendation model by the way of graph embedding to form a recommendation model composed of graph embedding module and recommendation module. In stage 3, on the basis of the application of knowledge graph and recommendation mode, DCIRS was developed, for practical use. In addition, DCIRS has been validated for accuracy for assessing the correctness of the profiling and recommendation, by enrolling 56 caregivers.

RESULTS

The proposed DCIRS has functions of knowledge graph management and dementia care decision support. Experiments on 56 caregivers in single class recommendation task; the value of accuracy is equals to 98.92% and indicates the high capability of DCIRS.

CONCLUSIONS

This study was a pioneering research to develop a more comprehensive DCIRS for caregivers of people with dementia. According to the evaluation results, our DCIRS showing high specificity and accuracy. This system can provide a novel perspective for patient-centered and needs-based support of caregivers of people with dementia.

摘要

背景

照顾痴呆症患者被认为是最具挑战性的护理角色之一,因此有效的实用支持至关重要。基于互联网的定制化健康干预的一种创新方法是使用推荐系统。

目的

本研究开发了一种痴呆症护理智能推荐系统(DCIRS),当痴呆症患者的护理人员遇到各种困难的护理问题时,该系统可以为他们提供个性化和及时的护理建议。

方法

开发过程分为 3 个阶段。在第 1 阶段,我们完成了痴呆症护理领域知识图谱的构建。在第 2 阶段,将建立的痴呆症护理领域知识图谱通过图嵌入的方式引入到推荐模型中,形成由图嵌入模块和推荐模块组成的推荐模型。在第 3 阶段,在知识图和推荐模式的应用基础上,开发了 DCIRS,用于实际应用。此外,通过招募 56 名护理人员,对 DCIRS 进行了准确性验证,以评估建档和推荐的正确性。

结果

所提出的 DCIRS 具有知识图谱管理和痴呆症护理决策支持功能。在 56 名护理人员的单类推荐任务实验中;准确性的值等于 98.92%,表明了 DCIRS 的高能力。

结论

本研究是开发针对痴呆症患者护理人员的更全面的 DCIRS 的开创性研究。根据评估结果,我们的 DCIRS 表现出较高的特异性和准确性。该系统为以患者为中心和基于需求的痴呆症患者护理人员支持提供了新视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验