Suppr超能文献

纺锤体检验点蛋白在减数分裂中的不同作用。

Distinct roles of spindle checkpoint proteins in meiosis.

机构信息

The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.

The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.

出版信息

Curr Biol. 2024 Aug 19;34(16):3820-3829.e5. doi: 10.1016/j.cub.2024.07.025. Epub 2024 Jul 29.

Abstract

Gametes are produced via meiosis, a specialized cell division associated with frequent errors that cause birth defects and infertility. Uniquely in meiosis I, homologous chromosomes segregate to opposite poles, usually requiring their linkage by chiasmata, the products of crossover recombination. The spindle checkpoint delays cell-cycle progression until all chromosomes are properly attached to microtubules, but the steps leading to the capture and alignment of chromosomes on the meiosis I spindle remain poorly understood. In budding yeast meiosis I, Mad2 and Mad3 are equally important for spindle checkpoint delay, but biorientation of homologs on the meiosis I spindle requires Mad2, but not Mad3. Here we reveal the distinct functions of Mad2 and Mad3 in meiosis I chromosome segregation. Mad2 promotes the prophase to metaphase I transition, while Mad3 associates with the TOGL1 domain of Stu1, a conserved plus-end microtubule protein that is important for chromosome capture onto the spindle. Homologous chromosome pairs that are proficient in crossover formation but fail to biorient rely on Mad3-Stu1 to ensure their efficient attachment to microtubules and segregation during meiosis I. Furthermore, we show that Mad3-Stu1 are essential to rescue the segregation of mini-chromosomes lacking crossovers. Our findings define a new pathway ensuring microtubule-dependent chromosome capture and demonstrate that spindle checkpoint proteins safeguard the fidelity of chromosome segregation both by actively promoting chromosome alignment and by delaying cell-cycle progression until this has occurred.

摘要

配子是通过减数分裂产生的,减数分裂是一种与频繁错误相关的特殊细胞分裂,这些错误会导致出生缺陷和不育。在减数分裂 I 中,同源染色体分离到相对的两极,通常需要通过交叉重组的产物交叉来连接。纺锤体检查点会延迟细胞周期的进展,直到所有染色体都正确地附着在微管上,但导致染色体在减数分裂 I 纺锤体上捕获和排列的步骤仍然知之甚少。在芽殖酵母减数分裂 I 中,Mad2 和 Mad3 对纺锤体检查点延迟同样重要,但同源染色体在减数分裂 I 纺锤体上的双取向需要 Mad2,但不需要 Mad3。在这里,我们揭示了 Mad2 和 Mad3 在减数分裂 I 染色体分离中的不同功能。Mad2 促进从前期到中期 I 的转变,而 Mad3 与 Stu1 的 TOGL1 结构域结合,Stu1 是一种保守的端微管蛋白,对染色体捕获到纺锤体上很重要。同源染色体对在交叉形成方面表现出色但未能双取向的,依赖 Mad3-Stu1 确保它们在减数分裂 I 期间有效地附着到微管上并进行分离。此外,我们还表明 Mad3-Stu1 对于拯救缺乏交叉的小型染色体的分离是必不可少的。我们的研究结果定义了一种新的途径,确保微管依赖性染色体捕获,并表明纺锤体检查点蛋白通过积极促进染色体排列和延迟细胞周期进展来确保染色体分离的保真度,直到发生这种情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7617576/98ce91d37580/EMS204298-f005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验