Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
J Appl Clin Med Phys. 2024 Sep;25(9):e14466. doi: 10.1002/acm2.14466. Epub 2024 Jul 30.
This study aims to illustrate how a script-based automated tool can efficiently verify documentation for LDR prostate brachytherapy.
An in-house Python-scripts-based tool was developed to automatically verify the specific checklists, aligned with our institutional practice guidelines for prostate seed implants (PSI). The scripts, compatible with our radiation oncology information system, could be executed with an optional web-based middleware to access and evaluate Aria documents. Optimized based on data from the previous 400 patients, the automated tool was applied to a random cohort of 50 LDR patients. It evaluated the adequacy of specific EMR documents by performing checks for data completeness, consistency, and allowable value range. We analyzed the efficiency of using this tool against conventional manual checks in two LDR processes: seed ordering and monthly audits for our PSI programs.
The automated tool effectively performed chart checks on the involved PSI documents. Human errors, such as typos and inconsistent information, were identified in 7 out of 50 patients during the seed ordering process and in 2 out of 50 patients during the monthly audit. Meanwhile, this automation reduced the majority of manual chart-checking time by an average of 5 and 10 min per patient for these processes, respectively. The anticipated efficiency gains will continue to accrue as more check items are digitalized and assessable to the scripts.
The implementation of an automated tool tailored for LDR prostate brachytherapy has demonstrated its efficiency benefits. Such an approach can help other clinics substantially enhance routine chart checks, periodic audits, and other applications in similar clinical settings.
本研究旨在展示基于脚本的自动化工具如何有效地验证 LDR 前列腺近距离放射治疗的文件。
开发了一个内部的基于 Python 脚本的工具,用于自动验证与我们前列腺种子植入术(PSI)机构实践指南一致的特定清单。这些脚本与我们的放射肿瘤信息系统兼容,可以通过可选的基于网络的中间件来访问和评估 Aria 文件。该自动化工具是在之前 400 名患者的数据基础上进行优化的,随后应用于 50 名 LDR 患者的随机队列。它通过检查数据的完整性、一致性和允许值范围来评估特定 EMR 文件的充分性。我们分析了在 LDR 过程中使用该工具的效率,包括种子订购和我们的 PSI 程序的每月审核。
自动化工具有效地对涉及的 PSI 文件进行了图表检查。在种子订购过程中,有 7 名患者中的 50 名和每月审核过程中,有 2 名患者中的 50 名患者中发现了人为错误,如错别字和信息不一致。同时,与传统的手动图表检查相比,这一自动化分别减少了这两个过程中每个患者平均 5 分钟和 10 分钟的图表检查时间。随着更多的检查项目数字化并可供脚本评估,预计效率将继续提高。
为 LDR 前列腺近距离放射治疗量身定制的自动化工具的实施已经证明了其效率优势。这种方法可以帮助其他诊所大大加强常规图表检查、定期审核和类似临床环境中的其他应用。