Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
Int J Biol Macromol. 2024 Oct;278(Pt 1):134235. doi: 10.1016/j.ijbiomac.2024.134235. Epub 2024 Jul 29.
Petrochemical resources are non-renewable, which has impeded the development of synthetic polymers. The poor degradability of synthetic polymers poses substantial environmental pressure. Additionally, the high cost of synthetic biopolymers with excellent degradation performance limits their widespread application. Thus, it is crucial to seek green, sustainable, low-cost polymers as alternatives to petrochemical-based synthetic polymers and synthetic biopolymers. Chitin is a natural and renewable biopolymer discovered in crustacean shells, insect exoskeletons, and fungal cell walls. Chitin chains consist of crystalline and amorphous regions. Note that various treatments can be employed to remove the amorphous region, enhancing the crystallinity of chitin. Chitin nanowhiskers are a high crystallinity nanoscale chitin product with a high aspect ratio, a large surface area, adjustable surface morphology, and biocompatibility. They discover widespread applications in biomedicine, environmental treatment, food packaging, and biomaterials. Various methods can be utilized for preparing chitin nanowhiskers, including chemical, ionic liquids, deacetylation, and mechanical methods. However, developing an environmentally friendly preparation process remains a big challenge for expanding their applications in different materials and large-scale production. This article comprehensively analyzes chitin nanowhiskers' preparation strategies and their drawbacks. It also highlights the extensive application in different materials and various fields, besides the potential for commercial application.
石化资源是不可再生的,这阻碍了合成聚合物的发展。合成聚合物的降解性能差,给环境带来了巨大的压力。此外,具有优异降解性能的合成生物聚合物成本高昂,限制了其广泛应用。因此,寻找绿色、可持续、低成本的聚合物替代基于石化的合成聚合物和合成生物聚合物至关重要。
甲壳素是一种在甲壳类动物外壳、昆虫外骨骼和真菌细胞壁中发现的天然可再生生物聚合物。甲壳素链由结晶区和无定形区组成。值得注意的是,可采用各种处理方法去除无定形区,提高甲壳素的结晶度。甲壳素纳米线是一种具有高结晶度的纳米级甲壳素产品,具有高纵横比、大比表面积、可调节的表面形态和生物相容性。它们在生物医学、环境处理、食品包装和生物材料等领域得到了广泛应用。
可采用各种方法制备甲壳素纳米线,包括化学法、离子液体法、脱乙酰化法和机械法。然而,开发一种环保的制备工艺仍然是一个巨大的挑战,这限制了它们在不同材料和大规模生产中的应用。本文全面分析了甲壳素纳米线的制备策略及其缺点。此外,还强调了其在不同材料和各个领域的广泛应用,以及在商业应用方面的潜力。