Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals; Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
Molecular Profiling and Drug Delivery, Small Molecule CMC Development, AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany.
J Control Release. 2024 Oct;374:1-14. doi: 10.1016/j.jconrel.2024.07.060. Epub 2024 Aug 7.
Upon intravascular applications, i.e., cancer treatment, nanoparticles (NPs) are required to deliver through blood circulation, sustain serum protein interactions, before they penetrate the blood vessels and reach targeted sites for payload drug release. For a delivery process as such, it is elusive and difficult to comprehend the morphological change of NP surface and evaluate associated effects on its targeted delivery. Herein, we used silica NPs with different surface modifications to demonstrate the morphological impact of NPs during the application of the NP-blood protein interaction, vascular endothelial cell penetration, subsequent targeted delivery and photodynamic therapy efficacy, and pursue high drug-load NPs with surface designs. Compared to solid and mesoporous NPs, we found the spiky tubular NPs reserved the NPs' antifouling properties (or shedding of "protein corona"), promoted better endothelial penetration and less destruction in vitro and in vivo. Such effects could be attributed to their spiky surface structures, which can limit the NP-protein interaction area and promote the NP-protein steric hindrance. Further in molecular simulations, we determined that the spiky tubular morphological modification on NPs enhanced the interaction free energy and lowered the amino acids number and the subsequent frequency in contacting with VE-cadherin of vascular endothelia. As a result, the spiky tubular NPs demonstrated its advantages in mitigating damages to VE-cadherin stability and endothelial cell integrity. Exploiting such spiky tubular surface modification, we can improve the NP delivery efficiency and prohibit the leakiness of vascular endothelia, helping address challenges faced by tumor migration in nanomedicine applications for cancer therapy.
在血管内应用中,即癌症治疗,纳米颗粒 (NP) 需要通过血液循环输送,维持与血清蛋白的相互作用,然后穿透血管并到达靶向部位释放有效载荷药物。对于这样的输送过程,难以捉摸和难以理解 NP 表面的形态变化,并评估其对靶向输送的相关影响。在此,我们使用具有不同表面修饰的二氧化硅 NP 来证明 NP 在 NP-血液蛋白相互作用、血管内皮细胞穿透、随后的靶向输送和光动力治疗效果的应用过程中形态变化的影响,并追求具有表面设计的高载药 NP。与实心和介孔 NP 相比,我们发现刺状管状 NP 保留了 NP 的抗污特性(或“蛋白质冠”的脱落),促进了更好的内皮穿透,并且在体外和体内的破坏更小。这种效果可以归因于它们的刺状表面结构,它可以限制 NP-蛋白相互作用的面积,并促进 NP-蛋白的空间位阻。在分子模拟中,我们进一步确定 NP 上的刺状管状形态修饰增强了相互作用自由能,并降低了与血管内皮 VE-钙粘蛋白接触的氨基酸数量和后续频率。结果表明,刺状管状 NP 在减轻 VE-钙粘蛋白稳定性和内皮细胞完整性的损伤方面具有优势。利用这种刺状管状表面修饰,我们可以提高 NP 的输送效率并防止血管内皮的渗漏,有助于解决纳米医学应用中癌症治疗中肿瘤迁移所面临的挑战。